Галогениды серебра в фотографии
Категория реферата: Рефераты по науке и технике
Теги реферата: тесты с ответами, понятие культуры
Добавил(а) на сайт: Юматов.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
Некоторые химические свойства и реакции галогенидов серебра
Как и любые другие вещества, галогениды серебра могут участвовать в самых различных реакциях, обнаруживая при этом большое разнообразие свойств. Нас здесь будут интересовать лишь те немногочисленные реакции и свойства галогенидов серебра, без которых было бы невозможно проведение фотографического процесса на традиционных галогенидосеребряных фотоматериалах. Эти реакции и свойства относятся к трем важнейшим этапам процесса: частичным превращениям в галогенидах серебра под действием света, проявлению экспонированных фотоматериалов, фиксированию проявленных фотоматериалов. В такой последовательности и будем их рассматривать. Кристаллы галогенидов серебра химически весьма устойчивы. Правда, при контакте со многими веществами возможно протекание различных реакций, но чаще всего реакции полностью ограничены поверхностью галогенида серебра и, более того, отдельными точками или малыми участками на этой поверхности, а кристалл в целом сохраняет свою химическую индивидуальность. Разложение кристаллов также протекает трудно и требует значительной затраты энергии извне. Одним из источников требуемой энергии может стать свет, поглощаемый в галогениде серебра. При этом происходит реакция
2AgHal —> 2Ag+Hal2 :
причем судьба двух ее продуктов неодинакова: серебро остается в кристалле, а галоген в виде двухатомных молекул выходит в окружающее пространство. На начальных стадиях разложения серебро собирается в малые частицы в отдельных точках кристалла и лишь при достаточно сильном экспонировании или другом воздействии (скажем, тепловом) можно обнаружить более или менее сплошной переход галогенида серебра в металл. Более подробно об особенностях протекания реакции на свету будет специально рассказано в следующих разделах. Отметим лишь, что световая энергия, необходимая для полного или хотя бы заметного разложения галогенида, столь велика, что если бы получение серебряного изображения пришлось осуществлять непосредственно, без В помощи других химических реакций, фотография никогда не смогла бы приобрести практического значения. Только благодаря тому, что почти все превращение серебряной соли в серебро идет без участия света, посредством реакции проявления, расход световой энергии удалось снизить до разумных пределов, а превращение, начатое на свету, доводить до конца в темноте.
Сущность проявления состоит в восстановлении ионов Ag+ из решетки микрокристаллов AgHal до Ag с помощью специально выбранных реагентов — проявляющих веществ, играющих роль восстановителей. Они передают электроны ионам Ag+, играющие в данном случае роль окислителя проявляющего вещества. Передача происходит преимущественно на тех микрокристаллах, которые подверглись экспонированию и поэтому содержат малые частицы серебра. Происходящую химическую реакцию восстановления можно схематически записать в виде
AgHal + Red —> Аgметалл + Ox + Hal
где Red — проявляющее вещество в активной восстановленной форме. Ox — он же в окисленной форме; индекс (Ag) над стрелкой означает, что реакция идет при некой форме участия уже имеющегося серебра, возникшего на стадии экспонирования.
Чем сильнее экспонирован данный участок фотоматериала чем больше число микрокристаллов, в которых возникли малые частицы Ag, тем интенсивнее идет проявление и тем больше образуется на данном участке проявленного металлического серебра. Количество образовавшегося серебра в свою очередь определяет степень видимого почернения участка, и в первом приближении эти две характеристики почти пропорциональны. Поэтому между подействовавшим количеством освещения и почернением, возникшим в результате его действия во время проявления, существует однозначная зависимость, одна из самых важных в фотографии (о ней специально см. раздел 2.3).
Если свойство галогенида серебра восстанавливаться в присутствии малых частиц серебра необходимо для получения фотографического почернения, то без способности галогенида растворяться в водных растворах было бы невозможно это изображение сохранить неизменным. Действительно, оставив в проявленном материале неиспользованный, т. е. неэкспонированный галогенид, мы предоставили бы ему в дальнейшем изменяться, в частности разлагаться под действием света, тепла и других внешних факторов, что привело бы к постепенному потемнению непроявившихся участков. Именно поэтому проявленное фотографическое изображение фиксируют, т. е., говоря на языке химии,— удаляют остаточный галогенид путем его растворения. Растворимость любых галогенидов серебра в воде низка, т. е. в раствор переходит очень незначительное количество ионов Ag+ и Hal-. Между раствором и микрокристаллами устанавливается равновесие:
AgHal AgHal Ag+ + Hal-
микро- раствор раствор
кристалл
Мерой растворимости галогенида серебра, как и любых солей, в воде служит их произведение растворимости (ПР), т. е. произведение концентраций растворенных в воде катионов и анионов данной соли. Величина ПР составляет для AgCl 1,6•10-10, для АgВг 6,3•10-13, для AgI 1,5•10-16 при комнатной температуре. Хотя эти величины очень малы, различия между ними вполне ощутимы, и многие любители знают, насколько быстрее фиксируются, скажем, фотобумаги с AgCl- или AgCl + AgBr-эмульсиями, чем с AgBr- или AgBr + AgI-эмульсиями. На растворимость микрокристаллов галогенида серебра влияет также их размер: чем он меньше, тем растворимость больше, и не случайно позитивные пленки обычно фиксируются быстрее, чем негативные, в которых, как правило, микрокристаллы значительно крупнее.
Однако даже в лучшем случае, взяв мелкозернистую хлоридо-серебряную эмульсию, мы не добьемся достаточной растворимости галогенида серебра в воде, чтобы полностью отфиксировать фотоматериал. Остается один выход: связать ионы Ag+, переходящие в раствор, в какие-либо достаточно прочные соединения, например в комплексные, и тогда равновесие написанной выше реакции сместится вправо; иными словами, переход ионов Ag+ и Hal- в раствор ускорится. Естественно, чем более прочным будет комплексное соединение, тем с большей скоростью будут растворяться микрокристаллы галогенида серебра. Для оценки прочности комплексных соединений в химии пользуются константой нестойкости K. Для комплексов серебра она определится как
К = [Ag+] [A-]/[AgAn]
Здесь квадратные скобки означают концентрацию веществ в растворе, AgAn — комплекс Ag; п — координационное число, т. е. число анионов комплексообразователя, связанных с Ag+; А- — анион координируемой молекулы.
Величина К зависит в первую очередь от природы комплексообразующего вещества. Наиболее распространенные в фотографии вещества этого рода—тиосульфаты натрия, калия, аммония (анион S2O32-), тиоцианаты тех же катионов (анион SCN-), цианиды натрия и калия (анион CN-), сульфиты натрия и калия (анион SO32-), гидроксид аммония NH4OH. Эти вещества в порядке увеличения К. или уменьшения прочности образуемого ими комплекса можно расположить в следующий ряд: цианиды > тиосульфаты > тиоцианаты > гидроксид аммония > сульфиты. Из этого ряда следует, например, что цианиды и тиосульфаты растворяют галогенид серебра быстрее, чем сульфиты. Однако пригодность того или иного соединения в качестве фиксирующего вещества определяется не только его способностью растворять AgHal. Так, высокая токсичность делает неприемлемым массовое использование цианидов, при работе с гидроксидом аммония выделяются пары аммиака, в растворах с тиоцианатами при больших концентрациях последних размягчается эмульсионный, слой. В целом наиболее приемлем в качестве фиксирующего вещества тиосульфат натрия (eгo в обиходе часто называют гипосульфитом).
На скорость растворения; галогенида серебра существенно влияет также концентрация комплексообразователя — с ее ростом увеличивается общая скорость процесса и повышается прочность, образующегося комплекса серебра. Например, изменением концентрации тиосульфата натрия можно изменять величину соответствующих комплексных соединений в 105 раз, и столь значительнее изменение прочности этих соединений не может не сопровождаться значительным изменением скорости растворения галогенида серебра.
Описанные закономерности восстановления, и растворения галогенида серебра лежат в основе разработки рациональных рецептур процессов как изготовления фотоэмульсий (в частности, получения заданных размеров и форм микрокристаллов), так и обработки готовых фотоматериалов.
Природа светочувствительности галогенидов серебра
Под действием света в галогеииде серебра начинается реакция разложения — так называемый фотолиз (от греческих слов phos—свет и lisis—разложение). На начальной стадии выделе-дне продуктов этой реакции, металлического серебра и газообразного галогена, обычными методами анализа заметить нельзя: слишком малы их количества, особенно если, реакция проходит в масштабе отдельного микрокристалла фотоэмульсии. Более того, как станет ясно из дальнейшего, в самом начале реакция может быть обратимой, т. е. как только свет перестает действовать, а возможно, еще и во время освещения, образовавшиеся продукты фотолиза способны исчезнуть, вновь образуя те пары ионов Ag+ и Hal- в решетке, какие существовали до начала действия света. Между тем, читатель уже знает, что светочувствительность в фотографии означает не просто способность к изменениям под . действием света, а способность к стабильным изменениям, и если ; продукты реакции быстро исчезают, возвращаясь к исходному соединению, заметить светочувствительность такого вещества фотографическим путем не удается.
Обратим внимание на следующее обстоятельство: в решетке серебро и галоген находятся в форме ионов, а после разложения оказываются в форме нейтральных атомов (галоген обычно даже в виде молекул Наl2). Если вспомнить, что у иона Ag+ не хватает одного электрона по сравнению с атомом Ag, y иона Hal- имеется лишний электрон: по сравнению с атомом Hal, можно сделать вывод,что под действием света тем или иным путем происходит передача электрона от “богатых” электронами ионов На1- к “бедным” ионам Ag+. Валовое уравнение реакции так и пишется:
Ag+Hal- hv Ag0+Hal0
(hv над стрелкой означает, что реакция идет не самопроизвольно. а за счет кванта света). Однако отсюда еще не следует, что электрон прямо передается от Наl- его соседу по решетке Ag+. Более того, многие факты показывают гораздо более сложный путь, по которому такая передача идет. Из этих фактов наибольший интерес представляют два.
Во-первых, если оценивать светочувствительность по количеству выделившегося продукта (обычно серебра, поскольку металл для наблюдения удобнее, чем газ), то она тем ниже, чем более совершенен кристалл. Скажем, хорошо выращенный крупный монокристалл бромида серебра в сотни и тысячи раз уступает по светочувствительности фотоэмульсионным микрокристаллам, растущим в условиях сложных взаимодействий с окружающей средой в присутствии веществ, оказывающих влияние на их поверхность или входящих в состав микрокристаллов в качестве примесей. Правда, совершенный кристалл можно сделать несовершенным, подвергнув механическим, химическим, радиационным и иным воздействиям и убедиться, что при этом он действительно становится более светочувствительным; этим подтверждается связь светочувствительности с несовершенством кристалла. Во-вторых, отложение продуктов фотолиза (особенно серебра) никогда не происходит равномерно по объему кристалла, а сосредоточено в отдельных его местах, причем они довольно точно совпадают с нарушениями структуры кристалла. Нередко даже пользуются отложением серебра именно для того, чтобы сделать видимыми протяженные дефекты кристалла — трещины, пустоты, дислокации и т. п. (рис. 6). Следовательно, не могло быть никакой прямой передачи электрона от аниона к соседнему катиону, а происходила какая-то более сложная цепочка процессов. Хотя она и, привела к отложению атома серебра, но коль скоро это произошло не в непосредственном соседстве с тем анионом Hal-, на котором при поглощении кванта света произошел отрыв электрона, то в отложении серебра участвовали еще и какие-то перемещения! электронов, ионов Ag+ и других партнеров по всему кристаллу.
Рекомендуем скачать другие рефераты по теме: реферат рк, история государства и права шпаргалки.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата