Генетическая инженерия
Категория реферата: Рефераты по науке и технике
Теги реферата: quality assurance design patterns системный анализ, казахстан реферат
Добавил(а) на сайт: Филиппа.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Социальные, психологические, этические проблемы именно такого массового "тиражирования" человека (зародышей и взрослых людей - генетических копий-двойников) еще в 1932 году предвидел и описал О. Хаксли, родственник известного дарвиниста Т. Гексли, в виде развернутой притчи - фантастического романа-антиутопии "О, дивный новый мир!". Эта книга давно и очень хорошо известна большинству зарубежных читателей, а несколько лет назад издана и на русском языке. По ее сюжету, основа существования некоего будущего тоталитарного государства - это клонирование людей-близнецов на специальных фабриках с последующей жесткой "дрессировкой" растущих там эмбрионов, а затем и получающихся из них детей. В те далекие годы пищу для души и ума Хаксли дали не только становление социализма и фашизма, но и опыты Г. Шпемана, который еще в начале века сумел разделять клетки самых ранних зародышей амфибий так, что из каждой такой клетки развивался целый организм. Именно эти опыты и были самым первым шагом к методикам клонирования. А насколько длительна и богата событиями их история - уже говорилось.
Е.С. Платонов: Мне представляется, что желание некоторых "горячих голов" призывать к клонированию людей вновь оживляет порочные идеи раннего периода развития евгеники - о селекции людей с "особенно ценными" геномами. Теперь говорят нс столько о селекции, сколько о клонировании.
А.П. Назаретян: Но клонирование - это еще не генная инженерия. Что можно искусственно сделать при "производстве" (рождении) человека? Можно ли сделать так, чтобы родился мой двойник, но, скажем, без плоскостопия или с другим цветом глаз? Каковы здесь пределы? Е.С. Платонов: В этом случае жестких технологических запретов, я думаю, нет...
А.Е. Седов: Здесь необходимо пояснить, что же называют клонированием и какие новые знания и умения (методики) биологов могут вызывать надежды и тревоги в обществе. Клонированием называют все методы направленного размножения генетического материала бесполым путем, в результате деления одной клетки. Современные биологи умеют клонировать отдельные выделенные участки ДНК (в частности, гены) и получаемые из них комбинации, вводя их в живые клетки -и затем эти клетки размножая, или же клонировать клетки целиком, с их нетронутыми генетическими программами - геномами. Размеры геномов на три-шесть порядков больше, чем размеры клонированных фрагментов ДНК, и их генетические тексты гораздо сложнее. Так что этот термин означает две группы биотехнологий - логически сходных, но охватывающих генетические структуры и процессы двух различных масштабов и уровней.
На первом из этих уровней - при клонировании участков ДНК - направленно вносят те или иные наследуемые изменения в определенные участки генетического материала, создают новые их комбинации,^ затем наблюдают, как они размножаются и работают в различных клетках и организмах. Это - генетическая (и, в частности, генная) инженерия. К ней относят и "крупноблочные перекраивания" генома - хромосомных наборов, и отдельных хромосом, во многих случаях полученные методами классической генетики, без выделения ДНК из клеток. Зародившаяся в начале 1970-х годов генная инженерия - это разнообразные манипуляции с выделенными из клеток фрагментами ДНК, как с осмысленными текстами. Эти тексты так или иначе изменяют, встраивают их в векторы (специально сконструированные ДНК, способные размножаться в живых клетках) и вводят эти векторы в живые клетки и организмы для того, чтобы изучать, как "отредактированные" гены и их комбинации размножаются и работают. Таковы технологии клонирования участков ДНК в составе рекомбинантных ДНК - новых комбинаций генетических текстов.
Генетики уже умеют "прицельно" выделять и размножать многие конкретные генетические тексты, заменять в них определенные "буквы"-нуклеотиды, "сшивать" новые работающие генные сочетания - конструкты из разных фрагментов ДНК-текстов (порой принадлежащих нескольким чрезвычайно разным организмам). У нескольких экспериментальных объектов (кишечной палочки, дрожжей, дрозофилы, шпорцевой лягушки, мыши) иногда удается даже так встраивать конструкты в определенные места их собственных генетических программ, что эти "нововведения" передаются потомству. Эта процедура называется трансгенозом. Работы по трансге-нозу на человеке не производят: это аморально. Но здесь есть перспективы для генотерапии - медицинской генетики будущего.
А второй уровень - это клонирование целых клеток. Здесь клонируют "нетронутые", целые геномы многоклеточных организмов, манипулируя целыми клетками и их совокупностями. Это техника клеточной, тканевой и эмбриональной инженерии -от имплантации отдельных клеток (в частности, яйцеклеток и зародышей - в матку) до имплантации,целых тканей и органов как зародышам, так и взрослым организмам. Здесь задачи генетиков состоят в том, чтобы понять, как же работают многочисленные собственные гены организма при его развитии. Иногда оба уровня сочетают. И на обоих уровнях исследований клонирование просто необходимо, чтобы изучать регуляцию работы различных конкретных генов и их блоков (как естественных, так и "перекроенных" - модельных) в различных целых геномах, клетках и организмах. Это - путь к решению главных проблем биологии развития многоклеточных организмов: генного контроля межклеточных взаимодействий, дифференцировки клеток, формообразования. Все эти техники необходимы и в прикладных целях - для изучения множества болезней (включая рак), старения и других фундаментальных жизненных процессов.
Н.К. Янковский: Вы знаете, здесь количество переходит в качество. В дело вступает собственно генная инженерия - ставится вопрос об изменении наследственной информации. Предположим, человек - дальтоник, не различает цветов. В его генетическом тексте достаточно заменить одну букву. Общая же длина всего генетического текста человека больше 3 млрд букв. Одну букву заменить можно. Сейчас бурно развивается такое направление в науке, как генотерапия. Оно разрабатывает способы целенаправленной замены генетического материала в нужном месте. Но это предельная цель, экстремальная. Такая замена будет происходить с частотой на три порядка меньшей, чем многие другие события, которые приводят к изменению генетического материала, большинство из них будут даже не нейтральными, а вредными. То есть если вы хотите, чтобы борода из черной стала рыжей, то появится, возможно, один человек с "заказанной" бородой. Но вдобавок - еще тысячи индивидов, половина которых будет отягощена разного вида уродствами. Вот такая плата.
Л.И. Корочкин: Я согласен с Янковским и полагаю, что в этой ситуации возникнут многочисленные этические проблемы, не всегда легко разрешимые. Ведь речь идет об экспериментальном вмешательстве в развитие человека, а это всегда вызывает дискуссии.
При этом нельзя не считаться с существующим законодательством и религиозными устоями общества.
А.П. Назаретян: Я ведь не о практическом приложении. Что можно сделать из исходного материала в принципе, технологически?
Н.К. Янковский: Дело именно в постановке вопроса. Количество переходит в качество, и разумное соотношение этих переходов вряд ли будет когда-нибудь практически достижимо. Вариантов событий слишком много, и поэтому задача практически невыполнима. Скажем, так: мы с вами, будучи особями одного вида и одного пола, по этим самым 3 млрд букв различаемся в каждой трехсотой. То есть между нашими генетическими текстами около 10 млн различий. Чтобы превратить меня в вас или наоборот, надо исправить в 3 млрд букв 1 млн. Здесь количество и качество имеют абсурдное соотношение. Объем работы таков, что никогда не будет технически достижим. Вообще, зачем из одного человека делать другого? Смысла нет.
А.П. Назаретян: А из одного генома сделать другой геном - с заданными свойствами?
Н.К. Янковский: Если речь идет о единичном свойстве. Да, мы знаем, каким образом оно генетически контролируется; знаем в некоторых случаях, как конкретно можно его изменить. Например, в случаях многих наследственных болезней.
А.П. Назаретян: Сможет ли в принципе это делать генная инженерия? Е.С. Платонов: В медицинской практике, мне кажется, чаще возникает проблема лечения (компенсации) проявлений наследственных аномалий или выраженных наследственных патологических предрасположенностей у конкретных людей, а не у их будущих потомков. В литературе появляются публикации с обнадеживающими результатами. В частности, в США больным, страдающим тяжелыми формами варикозного расширения вен нижних конечностей, которых готовили к операции, ввели некий ген, контролирующий локальный рост кровеносных сосудов. В результате у 80% операцию было решено отменить: стали бурно развиваться мелкие сосуды, которые в значительной степени компенсировали основные проявления этой болезни. Если сообщение достоверно, то мы имеем удачный пример медицинских возможностей генной инженерии.
А.П. Назаретян: Я все-таки хотел бы услышать о технических пределах таких возможностей. Видите ли вы их в генной инженерии, в целенаправленном изменении генома ?
Н.К. Янковский: Есть другие задачи - более быстро достижимые и имеющие более явный эффект для общества. В рамках программы "Геном человека", которая сейчас является самой большой биологической программой в мире, предполагается охарактеризовать более 90% всех тех мутаций - спонтанных изменений в генетических текстах, — которые приводят к наследственным болезням. Их можно диагностировать уже на ранних стадиях беременности, когда еще можно ее прервать. Уже более 20 лет в клиниках развитых стран применяется амниоцентез: из матки беременной женщины берут околоплодную жидкость и из нее извлекают свободно плавающие клетки плода пренатально (т.е. до его рождения). Эти клетки размножают в культуре и исследуют разнообразными биохимическими и молекулярно-генетическими методами. В дальнейшем есть перспективы анализировать клетки плода без амниоцентеза: такие клетки есть в кровотоке матери, и их удается вылавливать даже из небольшого количества крови, взятой из пальца беременной. Вот это, по-моему, многое даст уже в течение ближайшего десятилетия. Уже сейчас таким образом генетики умеют распознавать около 200 из 4 тыс. известных наследственных болезней человека. А появится возможность в каждом случае беременности, для каждого плода делать полные описания по всем известным мутациям. Для этого не нужно даже узнавать, чем болели родители. Просто, зная мутации, характерные для данной группы населения, можно будет изучать их характер в ДНК и их биохимические проявления в клетках плода, и все их тестировать. Новорожденным можно будет выдавать паспорта, в которых заранее может быть указано, чем человек будет или не будет болеть, к чему он будет иметь склонности, способности и т.д. Но это уже важная этическая, а не только медицинская проблема.
А.П. Назаретян: Можно ли в принципе по заданию делать людей, скажем, приспособленных к космонавтике? Например, чтобы была значительно меньше потребность в кислороде?
Н.К. Янковский: Все, что можно сделать, будет находиться в пределах той нормы реакции, которая нам суждена как виду. Эта норма реакции уже реализована у разных людей. Надо просто выявить тех, у кого налицо искомый признак. Это гораздо проще.
А.Е. Седов: Кстати, в упомянутом романе-притче О. Хаксли, клонируя и воспитывая своих индивидов, "общество" изощренно управляет их развитием именно для их оптимальной "профориентации" (психофизиологических адаптации к тем или иным планируемым для них профессиям), причем лишь в пределах их норм реакции, без изменений в генетических программах. Однако даже это приносит жуткие "плоды", "воспетые" и осмысленные автором.
А.П. Назаретян: А почему бы не расширить признаки вида, т.е. не создать признаки, которые до сих пор виду присущи не были? Это возможно?
Н.К. Янковский: Ответ на Ваш вопрос дает известный закон гомологических рядов наследственной изменчивости, сформулированный Н. Вавиловым. В принципе кое-какие можно. Так, у собак получали окраску тигра.
Л.И. Корочкин: Сейчас широко используются в биологии так называемые трансгенные животные, т.е. такие животные, в геном которых с помощью генно-инже-нерных и эмбриологических методов введен чужеродный ген или гены от других видов. Можно также какой-то регулирующий развитие ген перенести в необычное место, что иногда приводит к удивительным результатам. Например, у мушки дрозо-филы глаза развиваются не только на обычном своем месте, но и на крыльях, на брюшке и в других необычных местах.
А.П. Назаретян: А можно ли выйти за пределы нормы реакции?
Н.К. Янковский: Существуют мутации, которые меняют норму. Она становится шире. Можно придать какие-то новые признаки организму путем пересадки генов. Гены возникли задолго до того, как разошлись животные с растениями, и потому они "пересаживаются" сравнительно легко — в любых направлениях.
Рекомендуем скачать другие рефераты по теме: дипломная работа на тему бесплатно, красные реферат.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата