Генно-инженерные методы как новый биотехнологический подход в аграрном секторе США
Категория реферата: Рефераты по науке и технике
Теги реферата: доклад по английскому, виленкин математика 6 класс решебник
Добавил(а) на сайт: Толстой.
1 2 3 | Следующая страница реферата
Генно-инженерные методы как новый биотехнологический подход в аграрном секторе США
Жиганова Л.П.
Корни биотехнологии уходят в далёкое прошлое, они связаны с хлебопечением, виноделием и другими способами приготовления пищи, освоенными человеком на протяжении многих столетий. Древнейшим биотехнологическим процессом было брожение с участием микроорганизмов. В пользу этого свидетельствует описание процесса приготовления пива, обнаруженное в 1981 г. при раскопках Вавилона на дощечке, которая датируется примерно 6-ым тысячелетием до н. э. Известно, что шумеры изготовляли до 2 десятков видов пива.
Наукой биотехнология стала только со времен Л.Пастера, и долгое время ферментация была практически единственным производственным процессом, а микробиология – её фундаментальной основой. Биохимические методы вошли в практику много позже.
ХХ век отличается бурным развитием биологических наук, в первую очередь, молекулярной биологии и генетики, опирающихся на достижения химии и физики. К концу ХХ века мы оказались перед лицом глобальной генетической революции, которая может изменить многие стороны деятельности человека, прежде всего связанные с медициной и сельским хозяйством. Эта революция была предопределена значительным накоплением знаний в области генетики, биохимии и смежных наук, а также развитием мировых технологий в различных областях деятельности человека.
Это привело к созданию и реализации международного проекта "Геном человека", а также к расшифровке генетических наборов многих растений и животных. Новые научно-технологические возможности позволили манипулировать непосредственно генами, создавать новые продукты, организмы и изменять свойства уже существующих. Таким образом повысились шансы более полного использования потенциала живых организмов в интересах хозяйственной деятельности человека.
Биотехнология уже в настоящем, а тем более в будущем внесёт основной вклад в решение глобальных проблем человечества. Правительства наиболее развитых стран уже вложили значительные средства в развитие биотехнологии. Конечно, размеры этих вкладов и эффективность их использования далеко неодинаковы. Специалисты, участвующие в развитии биотехнологии, считают, что в масштабах государства успех в этой области может быть достигнут только при участии правительственных органов. Их поддержка чрезвычайно важна для развития этой сложной междисциплинарной технологии. От появления идеи до её реализации в разных отраслях биотехнологии лежит большой путь, и лишь в немногих странах, в частности в США, действуют сегодня адекватные экономические механизмы, создающие основу для оптимального развития этой технологии, причём в значительной мере независимо от действий администрации.
В настоящее время можно назвать несколько перспективных направлений в биотехнологии, уже реализуемых или близких к реализации:
- биоконсервация солнечной энергии;
- применение микроорганизмов для повышения выхода нефти и выщелачивания цветных и редкоземельных металлов;
- конструирование бактериальных штаммов, способных заменить дорогостоящие неорганические катализаторы и изменить условия биосинтеза для получения принципиально новых соединений;
- применение бактериальных стимуляторов роста растений;
- создание трансгенных сельскохозяйственных растений с изменённым генотипом и приспособленных вследствие этого к созреванию в экстремальных условиях (холода, кислотности, отсутствия удобрений);
- направленный биосинтез новых биологически активных препаратов – аминокислот, ферментов, витаминов, антибиотиков, различных пищевых добавок и других продуктов;
- изменение фотосинтезирующих свойств растений.
Говоря о "новой биотехнологии" или её новых направлениях, обычно имеют в виду процессы генетической и клеточной инженерии, использование иммобилизованных биокатализаторов. Это не означает, что традиционное микробиологическое производство потеряло своё значение, оно и сегодня составляет материальную основу биопромышленности.
В 70-е годы в биотехнологию пришли новые идеи, прежде всего со стороны генной инженерии, создавшей способы целенаправленного изменения генетической программы микроорганизмов. Возможность практического использования искусственных генетических конструкций стала очевидна, и приёмы, родившиеся в лаборатории, начали мигрировать в производственные цеха. Так был получен коммерческий продукт – инсулин благодаря генетически сконструированному штамму кишечной палочки.
Вторым значительным вкладом современной биологии в биотехнологию стало культивирование клеток растений и животных. Сравнительно не так давно для промышленных целей выращивали только бактерии и грибы, а сейчас – любые клетки. В этой области дело не ограничилось простым наращиванием массы живого материала, возникла возможность управления развитием клеток, особенно у растений.
Третьим моментом, имеющим отношение к биотехнологии, является гибридизация клеток, иногда эволюционно очень далёких. Конечно, процесс слияния и сами полученные гибриды далеки от совершенства и не во всём управляемы, но, по крайней мере, в одном случае эта техника оказалась бесспорно полезной, а именно для получения моноклональных антител, имеющих большое значение в иммунологии и терапии человека.
Четвёртым пунктом развития биотехнологии явилась энзимология и клеточная биология, которые создали для промышленных условий возможности получения иммобилизованных ферментных и клеточных систем или иммобилизованных клеточных катализаторов согласно номенклатуре Европейской федерации по биотехнологии 1983 г.
Пятый пункт современной биотехнологии – создание трансгенных растений и животных с целенаправленными признаками и свойствами.
В мире США – крупнейший производитель и экспортёр биотехнологической продукции. Роль лидера обусловлена прежде всего высокими ассигнованиями государственного и частного секторов на фундаментальные и прикладные исследования, количеством занятых в НИОКР биотехнологических фирм и крупных промышленных компаний, в основе технологической мощи которых лежат собственные исследования и разработки. В финансировании фундаментальных и прикладных работ по биотехнологии основную роль осуществляет Национальный научный фонд, Министерства здравоохранения и социального обеспечения, сельского хозяйства, энергетики, химической и пищевой промышленности, обороны, НАСА, внутренних дел и др. Ассигнования выделяются по программно-целевому принципу, т. е. субсидируются и заключаются контракты на исследовательские проекты, которые выполняют внешние (по отношению к финансирующим инстанциям) организации. Это, прежде всего, университеты, научные центры, колледжи… В 90-е годы одновременно с поддержкой программ Министерства обороны, ориентированных на краткосрочную и долгосрочную перспективу, Правительство США резко увеличило финансирование наук о жизни в рамках Национального научного фонда и Национального института здоровья. Планируется к 2003 году довести бюджет Национального института здоровья до более чем 20 млрд долларов при увеличении объёма и продолжительности грантов. Основные компании, работающие в области биотехнологии: "Майкоген", "Калгене", "Эсгроу", "Сиба Сидс", "Монсанто", "Генентек", "Эмерикен Бридерс Сервис" и другие.
Бурное развитие биотехнологии позволяет строить далеко идущие планы. Только разработка методов генной инженерии, основанных на создании рекомбинантных ДНК, привела к тому "биотехнологическому буму", свидетелями которого мы являемся. Сама история этой науки – генной инженерии – яркий пример того, как сложно прогнозировать внедрение в практику достижений фундаментальных наук. Разработка технологии – результат значительных вложений в развитие молекулярной биологии за последние сорок с лишним лет. А ведь не так давно, в конце 60-х годов, многие биологи сетовали, что слишком уж много внимания уделяется этой престижной области биологии и химии, которая не даёт ничего полезного. Сегодня всем понятно, что открытия молекулярной биологии и генетики глубоко скажутся на судьбе человечества.
Основными методами генной инженерии являются молекулярное клонирование и секвенирование (определения последовательности нуклеотидов) ДНК. Эти методы тесно связаны: клонирование позволяет выделить очищенные участки ДНК, а секвенирование нуклеотидов, составляющих молекулу ДНК, предоставляют возможность анализировать и охарактеризовать эти выделенные участки.
Предварительные оценки общего количества генов в геноме ядра любой клетки растений или животных выявили, что оно колеблется от 10000 до 100000. Поэтому замечательно то, что, применяя эти методы, можно выделить один-единственный ген из тысяч в геноме и манипулировать им таким образом, чтобы добиться его экспрессии в клетке-реципиенте. В этом случае используются методы выделения, клонирования и переноса.
Первой ступенью в генно-инженерной работе является локализация целевого гена в геноме. Зачастую, исследователи работают с несколькими уже известными генами, поэтому для облегчения работы созданы библиотеки ДНК (библиотеки генов). В дальнейшем применяют специфические ферменты-рестриктазы, узнающие определённые последовательности нуклеотидов в ДНК и разрезающие цепи, причём ген можно разрезать в любом месте. Затем сшивают фрагменты с помощью специальных ферментов. Фрагменты комбинируют в любой нужной для исследователя последовательности, сшивают различные гены в один; при этом можно изобрести новый белок и синтезировать для него ген. В любой существующий ген можно ввести локальные изменения – точечные мутации, пропуски, вставки, перевёртыши. Любой ген можно размножить, используя полимеразную цепную реакцию. Различные гены можно клонировать, а также синтезировать разные варианты одного и того же гена. Все генетические изменения можно легко вносить в живой организм. Перечисленные методы называют методами первого поколения.
Рекомендуем скачать другие рефераты по теме: доклад по английскому, сочинение ревизор.
1 2 3 | Следующая страница реферата