Ламинарное и турбулентное течение вязкой жидкости
Категория реферата: Рефераты по науке и технике
Теги реферата: конспекты 4 класс, экзамены
Добавил(а) на сайт: Jalamov.
1 2 3 | Следующая страница реферата
Ламинарное и турбулентное течение вязкой жидкости
Реферат выполнила Плетнёва Елена Алексеевна, группа Т 13
Московский государственный университет инженерной экологии
Москва
2003 г
Вязкость. Коэффициент вязкости. Слоистое движение жидкости, возникающее при сильном влиянии трения. Воздействие статического давления на твердые тела, находящиеся в поле течения. Вязкий поток. Число Рейнольдса.
Вязкость. Коэффициент вязкости
В реальных жидкостях почти никогда нельзя пренебречь внутренним трением, вязкостью; большинство интересных вещей в поведении жидкости так или иначе связано с этим свойством. Циркуляция сухой воды (т.е. ее вязкость не учитывается) никогда не изменяется: если ее не было в начале, то она никогда не появится. В результате проведения экспериментов выясняется, что скорость жидкости на поверхности твердого тела не равна нулю. Можно заметить, что лопасти вентилятора собирают на себе тонкий слой пыли. Пыль не сдувается т.к. скорость воздуха относительно них, измеренная непосредственно на поверхности равна нулю. Теория должна учитывать, что во всех обычных жидкостях молекулы, находящиеся рядом с поверхностью имеют нулевую скорость (относительно самой поверхности).
Можно предположить, что если приложить к жидкости напряжение сдвига, то, сколь мало оно бы ни было, жидкость всё равно течет. В статическом случае никаких напряжений сдвига нет. Однако, когда равновесия еще нет, в момент, когда вы давите на жидкость, силы сдвига вполне могут быть. Вязкость как раз и описывает эти силы, возникающие в движущейся жидкости. Чтобы измерить силы сдвига в процессе движения жидкости, предположим, что имеются две плоские твердые пластины, между которыми находится вода. Причем одна из пластин неподвижна, тогда как другая движется параллельно ей с малой скоростью V0 . Если измерять силу, требуемую для поддержания движения верхней пластины, выяснится, что она пропорциональна площади пластины и отношению V0 /d, где d – расстояние между пластинами. Таким образом, напряжение сдвига F/A пропорционально V0 /d:
Коэффициент пропорциональности h называется коэффициентом вязкости.
Внутреннее трение в жидкости можно показать и с помощью другого опыта: налить в стеклянный сосуд глицерин, ярко окрасив его нижний слой, получаем горизонтальную поверхность; поместим в сосуд пластинку (рис. 1).
Рис. 1.
Во время движения пластинки все горизонтальные поверхности с обеих ее сторон искривляются. При этом частички жидкости испытывают вращение, справа – по часовой стрелке, слева – против. Такую область называют пограничным слоем. Самая внутренняя часть пограничного слоя прилипает к пластинке и движется с такой же скоростью u, как и сама пластинка. Следующие части слоя тоже приводятся в движение, но скорость их тем меньше. Чем дальше они от пластинки. В пограничном слое устанавливается градиент скорости ¶u/¶ x. Если движение сопровождается трением, то сила F требуется не только для достижения конечной скорости, но и для поддержания этой постоянной скорости. Трение в жидкости можно сравнить со сдвигом или срезом в твердых телах, однако существует и коренное различие: в твердых телах напряжение сдвига растет с увеличением деформации; внутреннее трение, напротив, пропорционально скорости деформации.
Часто удобнее бывает пользоваться удельной вязкостью, которая равна h , деленной на плотность r . При этом величины удельных вязкостей воды и воздуха сравнимы:
Вода при температуре 200 С h/r =10-6 м/сек,
Воздух при температуре 200 С h/r =15· 10-6 м/сек.
Обычно вязкость очень сильно зависит от температуры.
Слоистое движение жидкости, возникающее при сильном влиянии трения
Наблюдаемое нами движение называется “слоистым” или “ламинарным”. Толщина слоя жидкости при этом меньше, чем толщина D, создаваемого трением пограничного слоя. Примером ламинарного течения может служить - течение жидкости в узкой трубке длиной l. Поддержание этого течения требует силы
F=h 8p lum
Здесь um означает среднюю величину скорости течения, численно равную
um сила тока жидкости i/поперечное сечение трубки f
i=объем жидкости, протекающий через поперечное сечение f трубки/время течения t
Действительная скорость у поверхности трубки равна нулю, а в середине - наибольшая.
Течение жидкости в плоской, образованной двумя стеклянными пластинами кювете. Здесь возможно проследить пути отдельных частичек жидкости, которые образуют “нити тока”.
Введем в ламинарный поток препятствие в виде кружка, нити тока выглядят как на рисунке 2.
Рекомендуем скачать другие рефераты по теме: шпори для студентів, контрольная 3.
1 2 3 | Следующая страница реферата