Нанотехнологии, наноматериалы, наноустройства
Категория реферата: Рефераты по науке и технике
Теги реферата: курсовые работы скачать бесплатно, реферат китай курсовые работы
Добавил(а) на сайт: Антонов.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Рис. 4: а - С6Н6; b - СН2-СН2
Рис. 5. Xe/Ni (110)
Наноматериалы
Фуллерены, как новая форма существования углерода в природе наряду с давно известными алмазом и графитом, были открыты в 1985 г. при попытках астрофизиков объяснить спектры межзвездной пыли [4, 13]. Оказалось, что атомы углерода могут образовать высокосимметричную молекулу С60. Такая молекула состоит из 60 атомов углерода, расположенных на сфере с диаметром приблизительно в один нанометр и напоминает футбольный мяч (рис. 6). В соответствии с теоремой Л. Эйлера, атомы углерода образуют 12 правильных пятиугольников и 20 правильных шестиугольников. Молекула названа в честь архитектора Р. Фуллера, построившего дом из пятиугольников и шестиугольников. Первоначально С60 получали в небольших количествах, а затем, в 1990г., была открыта технология их крупномасштабного производства [14].
Фуллериты. Молекулы С60 , в свою очередь, могут образовать кристалл фуллерит с гранецентрированной кубической решеткой и достаточно слабыми межмолекулярными связями [15]. В этом кристалле имеются октаэдрические и тетраэдри-ческие полости, в которых могут находиться посторонние атомы. Если октаэдрические полости заполнены ионами щелочных металлов (¦ = К (калий), Rb (рубидий), Cs (цезий)), то при температурах ниже комнатной структура этих веществ перестраивается и образуется новый полимерный материал ¦1С60 [16]. Если заполнить также и тетраэдрические полости, то образуется сверхпроводящий материал ¦зС60 с критической температурой 20-40 К. Изучение сверхпроводящих фуллери-тов проводится, в частности, в Институте им. Макса Планка в Штутгарте [17]. Существуют фуллериты и с другими присадками, дающими материалу уникальные свойства. Например, С60-этилен имеет ферромагнитные свойства [18]. Высокая активность в новой области химии привела к тому, что уже к 1997 г. насчитывалось более 9000 фуллереновых соединений.
Углеродные нанотрубки. Из углерода можно получить молекулы с гигантским числом атомов [19]. Такая молекула, например С=1000000, может представлять собой однослойную трубку с диаметром около нанометра и длиной в несколько десятков микрон (рис. 7). На поверхности трубки атомы углерода расположены в вершинах правильных шестиугольников. Концы трубки закрыты с помощью шести правильных пятиугольников. Следует отметить роль числа сторон правильных многоугольников в формировании двухмерных поверхностей, состоящих из
Рис. 7. Нехиральные нанотрубки: а - С(n', n) - металл [50, 52];
Ь-С(n, 0):mod (n, 3) = 0 - полуметалл
mod (n, 3)!= 0 - полупроводник.
Рис. 8. Изогнутая трубка [56]
атомов углерода, в трехмерном пространстве. Правильные шестиугольники являются ячейкой в плоском графитовом листе, который можно свернуть в трубки различной хиральности (m, n)3 . Правильные пятиугольники (семиугольники) являются локальными дефектами в графитовом листе, позволяющими получить его положительную (отрицательную) кривизну. Таким образом, комбинации правильных пяти-, шести- и семиугольников позволяют получать разнообразные формы углеродных поверхностей в трехмерном пространстве (рис. 8). Геометрия этих наноконструкций определяет их уникальные физические и химические свойства и, следовательно, возможность существования принципиально новых материалов и технологий их производства. Предсказание физико-химических свойств новых углеродных материалов осуществляется как с помощью квантовых моделей, так и расчетов в рамках молекулярной динамики. Наряду с однослойными трубками имеется возможность создавать и многослойные трубки [20]. Для производства нанотрубок используются специальные катализаторы [21, 22].
В чем уникальность новых материалов? Остановимся лишь на трех важных свойствах.
Сверхпрочные материалы. Связи между атомами углерода в графитовом листе являются самыми сильными среди известных, поэтому бездефектные углеродные трубки на два порядка прочнее стали и приблизительно в четыре раза легче ее! Одна из важнейших задач технологии в области новых углеродных материалов заключается в создании нанотрубок "бесконечной" длины. Из таких трубок можно изготовлять легкие композитные материалы предельной прочности для нужд техники нового века. Это силовые элементы мостов и строений, несущие конструкции компактных летательных аппаратов, элементы турбин, силовые блоки двигателей с предельно малым удельным потреблением топлива и т.п. В настоящее время научились изготавливать трубки длиной в десятки микрон при диаметре порядка одного нанометра [23].
Высокопроводящие материалы. Известно, что в кристаллическом графите проводимость вдоль плоскости слоя наиболее высокая среди известных материалов и, напротив, в направлении, перпендикулярном листу, мала. Поэтому ожидается, что электрические кабели, сделанные из нанотрубок, при комнатной температуре будут иметь электропроводность на два порядка выше, чем медные кабели. Дело за технологией, позволяющей производить трубки достаточной длины и в достаточном количестве,
Нанокластеры
К множеству нанообъектов относятся сверхмалые частицы, состоящие из десятков, сотен или тысяч атомов. Свойства кластеров кардинально отличаются от свойств макроскопических объемов материалов того же состава. Из нанокластеров, как из крупных строительных блоков, можно целенаправленно конструировать новые материалы с заранее заданными свойствами и использовать их в каталитических реакциях, для разделения газовых смесей и хранения газов. Одним из примеров является Zn4O(BDC)3(DMF)8(C6H5Cl)4 [24]. Большой интерес представляют магнитные кластеры, состоящие из атомов переходных металлов, лантиноидов, актиноидов. Эти кластеры обладают собственным магнитным моментом, что позволяет управлять их свойствами с помощью внешнего магнитного поля. Примером является высокоспиновая металлоорганическая молекула Mn12O12(CH3COO)16(H2O)4 [25]. Эта изящная конструкция состоит из четырех ионов Мn4+ со спином 3/2, расположенных в вершинах тетраэдра, восьми ионов Мn3+ со спином 2, окружающих этот тетраэдр. Взаимодействие между ионами марганца осуществляется ионами кислорода. Антиферромагнитные взаимодействия спинов ионов Мn4+ и Мn3+ приводят к полному достаточно большому спину, равному 10. Ацетатные группы и молекулы воды отделяют кластеры Мn12 друг от друга в молекулярном кристалле. Взаимодействие кластеров в кристалле чрезвычайно мало. Наномагниты представляют интерес при проектировании процессоров для квантовых компьютеров [26-28]. Кроме того, при исследовании этой квантовой системы обнаружены явления бистабильности и гистерезиса [29, 30]. Если учесть, что расстояние между молекулами составляет около 10 нанометров, то плотность памяти в такой системе может быть порядка 10 гигабайт на квадратный сантиметр.
Наноустройства
Нанотрубки могут составлять основу новых конструкций плоских акустических систем и плоских дисплеев, то есть привычных макроскопических приборов. Из наноматериалов могут быть созданы определенные наноустройства, например нано-двигатели, наноманипуляторы, молекулярные насосы, высокоплотная память, элементы механизмов нанороботов. Кратко остановимся на моделях некоторых наноустройств.
Молекулярные шестерни и насосы . Модели наноустройств предложены К.Е. Drexler и R. Merkle из IMM (Institute for Molecular Manufacturing, Palo Alto) [31, 32]. Валами шестеренок в коробке передач являются углеродные нанотрубки, а зубцами служат молекулы бензола. Характерные частоты вращения шестеренок составляют несколько десятков гигагерц. Устройства "работают" либо в глубоком вакууме, либо в инертной среде при комнатной температуре. Инертные газы используются для "охлаждения" устройства.
Алмазная память для компьютеров. Модель высокоплотной памяти разработана Ch. Bauschlicher и R. Merkle из NASA [33]. Схема устройства проста и состоит из зонда и алмазной поверхности. Зонд представляет собой углеродную нанотрубку (9, О) или (5, 5), заканчивающуюся полусферой С60, к которой кpeпится молекула C5H5N. Алмазная поверхность покрывается монослоем атомов водорода. Некоторые атомы водорода замещаются атомами фтора. При сканировании зонда вдоль алмазной поверхности, покрытой монослоем адсорбата, молекулу C5H5 N, согласно квантовым моделям, способна отличить адсорбированный атом фтора от адсорбированного атома водорода. Поскольку на одном квадратном сантиметре поверхности помещается около 1015 атомов, то плотность записи может достигать 100 терабайт на квадратный сантиметр.
Приведенные выше примеры результатов лабораторного эксперимента и моделей наноустройств являются новым вызовом теории, вычислительной физике, химии и математике. Требуется осмысление "увиденного" и "полученного". Требуется выработка интуиции для работы в нанометровом диапазоне размеров. В очередной раз слышна реплика Фауста Вагнеру [34]:
"Что значит понимать?
Вот, друг мой, в чем вопрос.
На этот счет у нас не все в порядке".
Рекомендуем скачать другие рефераты по теме: человек изложение, скачать реферат человек.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата