Об ориентационном взаимодействии спиновых систем
Категория реферата: Рефераты по науке и технике
Теги реферата: рефераты, решебник по алгебре
Добавил(а) на сайт: Азарий.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
Этим угловым скоростям соответствуют кинетические энергии собственного Ekc и прецессионного Ekп вращения, равные:
Ekc = Lk2 cos2φ/2Ix; Ekп = Lk2/2Iy. (7)
Таким образом, суммарная кинетическая энергия рассматриваемого волчка
Ek = Ekc + Ekп = ΔEk = Lk2(cos2φ + Ix/Iy)/2Ix, (8)
является в общем случае функцией не только количества движения Lk, но и угла φ, определяющего ориентацию оси его собственного вращения в пространстве Ek=Ek(Lk,φ).
Сопоставляя Ek(Lk,φ) с величиной Ek0=Lk2/2Ix при том же значении Lk и φ=0, находим:
ΔEk = Ek – Ek0 = Lk2(cos2φ + Ix/Iy – 1)/2Ix = Lk2(Ix/Iy – sin2φ)/2Ix. (9)
Согласно (8), при sinφ<(Ix/Iy)0,5 кинетическая энергия прецессирующего волчка Ek превышает таковую в отсутствие прецессии (при φ=0). Это означает, что для возбуждения прецессионного движения необходимо затратить определенную работу. В условиях замкнутой системы с неизменным суммарным моментом количества движения L0=ΣLk0 это может быть вызвано только превращением в кинетическую потенциальной энергии взаимной ориентации тел U=U(φ). Вычислить эту работу и тем самым найти изменение ориентационной энергии можно из следующих соображений.
Известно, что прецессия волчка или гироскопа (т.е. дополнительное вращение их вокруг оси, не совпадающей с осью собственного вращения) возникает, когда к ним приложен определенный крутящий момент Mk=dLk/dt. Работа dWk=–Mk·dφ, которая затрачивается на отклонение оси гироскопа от его первоначального положения (при φ=0) в условиях Ωk=const и Lk0=IxΩk=const, равна, очевидно, дополнительной кинетической энергии dEkп=ωkdLk, которую приобретает гироскоп в результате прецессии. При этом величина угловой скорости прецессии ωk=|ωk| определяется известным соотношением [4]:
ωk=Mk/IxΩk·sinφ. (9)
Подставляя (9) в выражение dEkп и приравнивая последнее величине dWk, получим:
dLk = Lk0sinφ·dφ, (10)
Интегрируя это выражение в пределах от φ=0 до φ в условиях постоянства Lk, имеем:
(11)
Поскольку при φ=0 прецессия отсутствует, C=1, так что окончательно получаем:
Lk = Lk0(1 – cosφ). (12)
Согласно этому выражению, по мере увеличения угла φ под действием крутящего момента Mk момент количества прецессионного движения Lk также возрастает. Следовательно, с возникновением прецессии у вращающихся тел появляется дополнительная кинетическая энергия внутреннего вращения Eω. Таким образом, кинетическая энергия прецессионного движения Ek(φ) может служить мерой «разориентации» системы вращающихся тел. В этом порядке идей совершенно естественным выглядит тот факт, что прецессия прекращается с исчезновением крутящих моментов Mk. Это соответствует наступлению ориентационного равновесия в системе взаимодействующих тел, т.е. состояния, характеризующегося одинаковой ориентацией осей вращения тел или частиц. При «раскрутке» гироскопов направление Lk у них не изменяется, т.е. ориентационное равновесие не нарушается. Потому-то уравновешенные гироскопы и не изменяют в дальнейшем своей ориентации. Напротив, возникновение прецессии вращающихся тел свидетельствует об отсутствии в системе ориентационного равновесия и о наличии в ней поля крутящих моментов Mk. Источником возмущения при этом может служить, например, относительное движение тел, а в микромире – тепловое движение частиц. Это и объясняет, почему в упомянутых выше экспериментах для достижения спин-спинового равновесия требовались достаточно низкие температуры.
Обсуждение результатов
Зависимость всех упорядоченных форм энергии от взаимной ориентации тел с несферической симметрией свидетельствует о существовании в природе специфического ориентационного взаимодействия и соответствующего ему ориентационного равновесия. Специфика этого взаимодействия (независимо от его физической природы) состоит в стремлении к установлению единой ориентации осей симметрии тел (а для вращающихся тел – единой ориентации осей их вращения), соответствующей минимальному значению поля крутящих моментов (ориентационного поля) M(r,φ). Это поле не следует смешивать с гипотетическим торсионным полем (полем кручения), порожденным различной плотностью угловых скоростей Ωk или моментов вращения (спинов) тел и частиц Lk [6]. В отличие от последнего, поле M(r,φ) является составляющей известных силовых полей, т.е. присуще и неподвижным телам. Далее, оно существует и в системе тел (частиц), вращающихся с одинаковой угловой скоростью Ωk. Кроме того, оно направлено по нормали к Ωk и вызывает не ускорение, а переориентацию вектора их угловой скорости, т.е. изменяет ωk, а не Ωk. При этом наглядным проявлением отсутствия ориентационного равновесия является возникновение в спиновых микро- и макросистемах прецессионного движения.
Дальнодействие полей M(r,φ) определяется их конкретной физической природой и в принципе ограничено. Однако это ограничение не относится к волнам, возникающим при осцилляции этих полей. В частности, при осцилляции электромагнитных полей возникают электромагнитные волны, а при нарушении спинового порядка – так называемые спиновые волны, также обнаруженные экспериментально у целого ряда веществ [4]. Сфера распространения волн определяется, как известно, исключительно свойствами проводящей их среды, и для сред типа физического вакуума (с пренебрежимо малой диссипацией ориентационной энергии) может быть практически неограниченной. Поэтому ввиду направленного характера и возможности накопления ориентационного воздействия (в отличие от хаотических возмущений) оно может оказаться достаточным для упорядочивания не только микро, но и макросистем.
Наличие ориентационных полей и взаимодействий объясняет целый ряд явлений, начиная от выстраивания в одной плоскости колец Сатурна до явления спонтанного намагничивания ферромагнетиков. Однако более важным представляется вывод о существовании в Природе наряду с тенденцией к превращению упорядоченных форм энергии в тепловую противоположной тенденции к установлению порядка, обусловленной наличием полей M(r,φ) и ориентационных взаимодействий. Это положение не следовало из классической, статистической и неравновесной термодинамики [7] и является существенным дополнением к ним. Его учет проливает новый свет на процессы «самоорганизации» объектов живой и неживой природы, на противоположные диссипативным процессы в ряде областей Вселенной и другие явления, казавшиеся странными с позиций современного естествознания.
Список литературы
ЭткинВ.А. О специфике спин-спинового взаимодействия. НиТ, 2002.
RamseyN.F. Thermodynamics and Statistical mechanics by Negative Absolute Temperature. // Phys. Rev. – 1956. – V.103. – №1. – р.279.
АбрагамА., ПрокторУ. Спиновая температура. // Проблемы современной физики. – М., 1959. – Вып.1. (A.Abragam, W.Proctor. Spin Temperature. // Phys. Rev., 109, 1441...1458 (1958)).
Физический энциклопедический словарь. – М.: Советская энциклопедия, 1984.
ЛандауЛ.Д, ЛившицЕ.М. Теоретическая физика, Т.1 (Механика). М.:Наука, 1973
Рекомендуем скачать другие рефераты по теме: изложение язык, форма курсовой работы.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата