Подводные камни математики
Категория реферата: Рефераты по науке и технике
Теги реферата: реферат на тему дети, конспект урока 7 класс
Добавил(а) на сайт: Antipin.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
В такой ситуации проводить аналогию между небесными телами и элементарными частицами – это примерно то же, что подсчитывать золотой запас страны с помощью закона Ома или Гей-Люссака, а потом ужасно радоваться, если результат случайно совпал с действительностью. Подобная математическая эквилибристика не имеет ни малейшего научного основания. А в том, что такая эквилибристика вообще стала возможной – непростительная вина существующего математического аппарата, игнорирующего параметрическую локальность законов реального мира.
* * *
Представление о многократной вложенности Вселенных разных масштабов показало всю фантастичность математических иллюзий. Хотя при подстановке, например, параметров Солнца вместо параметров протона использованные законы перестали действовать, математический аппарат нисколько этому не воспротивился!!!
Математика в такой же степени не является первичным источником знаний, как наше сознание нельзя считать первичным по отношению к материальному миру. Роль математики вторична и не должна абсолютизироваться. Если математика способна приводить к открытию каких-то новых свойств окружающего мира, то только потому, что является более точной, более наглядной формой выражения данных, полученных из эксперимента, и только в той степени, в какой её формализмы адекватны исследуемым объектам.
Могут возразить, что математика содержит и собственные данные, собственные глубочайшие находки, не связанные с внешним миром. Например, она открыла нам натуральный ряд чисел и простые числа со сложными и не до конца ещё понятыми внутренними закономерностями.
Нет, это значит лишь, что внутри математики, как и внутри всякой другой дисциплины, существуют определённые внутренние правила, законы и аксиомы. Их истоки находятся вовне. Существование этих правил совершенно не означает, что хотя бы законы простых чисел могут быть применены к объектам окружающего мира без предварительного исследования этих объектов. Ведь может оказаться, что эти объекты вообще не являются дискретными об-разованиями. А в каких-то случаях может потребоваться применение аппарата нечётких мно-жеств Лофти Заде и т.д., и т.п.
Не случайно теоремы Курта Гёделя „о неполноте” показали невозможность существования полной формальной теории, внутри которой могли бы быть доказаны все истинные теоремы арифметики. Оказывается, для выяснения истины обязательно нужно выйти за рамки рассматриваемой теории! Вероятно, этот вывод нельзя доказать по отношению к ещё не появившимся разделам развивающейся математики, но он, безусловно, справедлив и в таком, наиболее широком толковании. В таком толковании его следует считать аксиомой.
Математику можно сравнить со скальпелем, помогающим проникнуть в глубинную сущность изучаемых объектов, или с тарой, с обёрткой, позволяющей компактнее упаковывать наши знания о таких объектах, и снабжать их удобными графическими этикетками. Но так же, как на рынке нужно всегда быть начеку, остерегаясь подделки, так и при использовании законов, представленных в формализованном виде, всегда нужно остерегаться несоответствия между математической упаковкой и реальным содержанием!
* * *
Человек как априорная (или мыслящая) творческая система, довёл свои творческие способности до высокого мастерства, в частности, за счёт использования математики. Поэтому математика стала одной из центральных научных дисциплин. Больше того, мощное развитие математики, по принципу обратной связи, повлияло на всю нашу жизнь. Математический подход настолько проник в нашу психологию, что мы порой не замечаем его. Выстроенный человеком искусственный мир и вся технологическая цивилизация оказались подчинёнными математическим догмам. Основой проектирования стал выбор технических решений, упрощающих расчёты. Мы экономим, прежде всего, на вычислениях – создаём легко рассчитываемые изделия с простыми формами, создаём конструкции, каждая деталь которых выполняет, преимущественно, одну, легко рассчитываемую функцию.
Задумывался ли читатель над тем, как много деталей у автомобиля, и как мало, по сравнению с ним, органов в более сложном организме человека? Здесь ярко проявилось различие пробующих и мыслящих творческих систем в подходах к своим творениям. Выполнение каждой деталью, преимущественно, одной функции усложняет конструкцию, но сокращает затраты интеллекта на вычисления, облегчает работу априорной творческой системы.
Инженеры проектируют полностью цилиндрический поршень автомобильного двигателя, тогда как ему достаточно иметь две кольцевые части и у одной из них – закрытый торец, а связь между этими частями может иметь любую форму, вплоть до петушиной головы. Архитекторы строят дома с ровными стенами и почти исключительно прямыми углами, хотя это противоречило исходной психологии существ, вышедших из пещеры, да и сейчас не очень вяжется с настроением людей, стремящихся к природным условиям. И так во всём: изделия наших рук – станки, приборы, сооружения – разрабатываются так, чтобы физические законы проявлялись в них, как в математике, в наиболее „чистом” виде, чтобы расчёт не ос-ложнялся необходимостью учёта сложных форм, сочетаний факторов и т.п.
Особый психологический прессинг математики испытывают учёные. Поэтому многие из них стали всерьёз считать, что „в каждой науке ровно столько науки, сколько математики”. Возникло явление, которое можно назвать математическим гипнозом. Бытует представление, будто удачное, красивое математическое описание того или иного явления уже само по себе доказывает истинность этого описания. Такой порочный подход приносит особый вред в разделах науки, где ощущается нехватка экспериментальных данных, и потому превалируют теоретические, гипотетические построения. Примером математического гипноза стало длительное господство в биологии многоклеточных организмов теории диссипативных структур, которая обладает красивым, корректным математическим аппаратом, но не совпадает с биологическими реалиями. Другим примером математического гипноза стало многолетнее господство в космологии усиленно разрабатывавшейся, но по-прежнему противоречащей реалиям, гипотезы Большого Взрыва.
* * *
В главе 3.4.11. („Мозг и „Дао физики””) моей книги "Подводные камни математики" рассказывалось о резких различиях между свойствами мира квантовой механики и привычного нам мира „средних измерений”. Процессы в мозге подчиняются, более всего, законам квантового мира. Соответственно, когда человек в процессе медитации затормаживает каналы связи с внешним миром, и остаётся наедине с собственным мозгом, воспринимая его как необъятную Вселенную, последняя выглядит построенной по законам квантового мира. Свойства этого мира настолько впечатляющи, что человек безусловно верит им, как подлинному облику Вселенной. Но, выйдя из медитации, и пытаясь приложить „увиденную” картину к реальному миру, он обнаруживает глубокое различие их свойств. А объясняется это, прежде всего, отличием размерных диапазонов, отли-чием квантового мира от нашего мира „средних измерений”.
В квантовом мире такая наука как статика, принципиально не могла бы возникнуть. У объектов этого мира не существует статики! Если в нашем мире „средних измерений” можно долго и обоснованно обсуждать причины и следствия, то по отношению к элементарным процессам квантового мира такие разговоры теряют смысл – здесь элементарные события всегда спонтанны, и каждый раз могут протекать не по одному, а по разным вариантам сценариев. В квантовом мире поражает невероятная механическая прочность атомов – напри-мер, атомы газа миллионы раз в секунду сталкиваются друг с другом, но после каждого столкновения сохраняют прежнюю форму, прежние качества. Никакая система планет, подчиняющаяся законам классической механики, не выдержала бы таких столкновений.
В квантовом мире точная определённость заменяется вероятностью существования. Становятся естественными внезапные переходы атомов из одного „квантового состояния” в другое. Величины квантового мира – расстояния, порции энергии, электрические заряды – принципиально дискретны. Квантовому полю приписывается самостоятельная физическая природа – природа протяженной среды, пронизывающей или наполняющей всё пространство. Частицы представляют собой лишь точки „сгущения” этой среды, возникающие и исчезающие энергетические узлы. Здесь не нашлось места одновременному существованию понятий поля и вещества – единственной реальностью оказалось понятие поля.
Можно было бы и дальше перечислять отличия квантового мира от нашего мира „сред-них измерений”. А ведь это один и тот же мир! Их отличает только диапазон размеров! В то же время, кто видел математический аппарат, достоверно описывающий чрезвычайно важ-ную для науки зону перехода от мира „средних измерений” к квантовому миру?
Не следует думать, что практиков вполне спасает от математического гипноза тесная связь с реальностью. От этой болезни страдают и они.
Самые лучшие идеи, приведшие к успеху в одном диапазоне параметров, чаще всего, ока-зываются бесполезными в другом параметрическом диапазоне. При распространении какого-либо закона на новый, резко отличающийся диапазон параметров всегда возникают новые условия, новая общая ситуация, например, изменяются соотношения объём/поверхность, размер/скорость и т.п., что, зачастую, меняет результат. В новом диапазоне параметров к рассматриваемому закону может приложиться действие другого закона, не проявлявшегося в прежних условиях. Соответственно, заманчивые попытки переноса законов и идеологий из одной области параметров в другие области, чаще всего, ведут к принципиальным просчётам. В том, что опасность этого не стала до сих пор азбучной истиной методологии науки, кроме математиков, повинны и философы.
Как пример практических промахов такого рода, можно упомянуть попытки переноса традиционных принципов построения электронных схем в молекулярную область размеров, что пытались (и всё ещё пытаются) делать многие учёные в ходе разработок молекулярной электроники. Были созданы остроумные логические элементы и элементы памяти молекулярных размеров. Но все попытки собрать из них нормально работающую схему традиционной архитектуры окончились провалом – при молекулярных размерах элементов схемы начинают проявляться свойства квантового мира, резко изменяющие общую ситуацию по сравнению с привычной полупроводниковой электроникой.
1. При создании всё более сложных и, казалось бы, совершенных логических элементов молекулярных размеров увеличивается число конкурирующих степеней свободы элемента и растёт вероятность того, что энергия сигнального воздействия не будет использована по назначению – переведёт молекулу не в заданное, а в какое-то иное новое состояние. Обычно вероятность правильного срабатывания исправных логических элементов молекулярной электроники не превышает 50% !
2. После получения входного сигнала, переводящего логический элемент молекулярной электроники на более высокий энергетический уровень, элемент не может долго оставаться на таком уровне. Через стотысячные доли секунды он возвращается в исходное состояние с низкой энергией, что принципиально отличает его от ламповых или полупроводниковых триггеров традиционной электроники.
3. Переход молекулярных логических элементов с высокого энергетического уровня на низкий не только нельзя отодвинуть на произвольное время, но нельзя и приблизить по своему желанию. Он неуправляем и, в известной степени, непредсказуем (нестабилен) по времени, что нарушает привычную логику действия информационных систем.
4. В отличие от кристаллов полупроводниковой микроэлектроники, элементы молекулярной электроники, из-за сложного химического состава, легко присоединяют, а затем прочно удерживают атомы посторонних примесей, выводящие их из строя. Кроме того, из-за малых размеров, эти элементы очень чувствительны к радиационному фону. Один квант ионизи-рующего излучения способен вызвать множественные обратимые и необратимые нарушения в схеме молекулярной электроники. Поэтому нужно заранее рассчитывать на присутствие в информационной системе большого количества хаотически расположенных неисправных элементов.
5. Нелегко создать микроманипулятор, способный захватить одну молекулу, правильно сориентировать её в пространстве и точно установить в заданное место молекулярной схемы. Но даже если такой манипулятор появится, изготовление молекулярно-электронной системы с его помощью, учитывая ожидаемые триллионные количества схемотехнических элементов, длилось бы веками. Поэтому в молекулярной электронике возможны лишь технологии, при которых одновременно монтируются миллионы и миллиарды однотипных логических элементов, что далеко от схем с традиционной архитектурой.
Трудности построения информационных систем из элементов молекулярной электроники имеют фундаментальный характер. При переходе из зоны „средних измерений” в микромир, при уменьшении элементов схемы до размеров атомов и молекул законы физики теряют привычный чёткий характер и приобретают принципиальную неопределённость. Здесь одно и то же событие, не нарушая законов физики, может происходить или не происходить, здесь вполне исправный элемент схемотехники может срабатывать или не срабатывать. В результате, остаётся справедливой давняя констатация, что „детальные предложения по схемотех-нике, основанной на молекулярных элементах ... отсутствуют; не представляется ... возмож-ным создать проект ... хотя бы простейшего молекулярного микроэлектронного изделия ... ” [Рамбиди, Замалин, 1986].
Таким образом, не только научные исследования, но и практика инженерных разработок столкнулась с болезненным провалом попыток автоматического переноса идеологии одной размерной области в другую область.
Рекомендуем скачать другие рефераты по теме: спортивные рефераты, ответы по истории.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата