Полноправность и физическая значимость электромагнитных векторных потенциалов в классической электродинамике
Категория реферата: Рефераты по науке и технике
Теги реферата: сочинение, реферат традиции
Добавил(а) на сайт: Kurbonmamadov.
1 2 3 | Следующая страница реферата
Полноправность и физическая значимость электромагнитных векторных потенциалов в классической электродинамике
В.В. Сидоренков
На основе анализа электродинамических уравнений Максвелла с целью их модификации для электромагнитных векторных потенциалов установлено, что векторные потенциалы являются полноправными физически значимыми полями, первичными по отношению к традиционным вихревым полям в классической электродинамике, а их применение расширяет представления об электромагнитных полевых процессах.
Концепция электромагнитных полей является центральной в классической электродинамике, поскольку именно с их помощью осуществляется взаимодействие разнесенных в пространстве электрических зарядов. Общепринято считать, что все явления электромагнетизма физически полно представлены этими электромагнитными полями, свойства которых исчерпывающе описываются системой электродинамических уравнений Максвелла. При этом непосредственно следующие из уравнений Максвелла векторные потенциалы указанных полей как физическую реальность по существу не рассматривают, и им отводится лишь роль вспомогательных математических функций, в ряде случаев упрощающих вычисления. Ниже физической значимости векторных потенциалов дается обобщенное, по нашему мнению, аргументированное толкование в виде систем электродинамических уравнений для указанных потенциалов, равноправных с традиционной системой уравнений Максвелла.
Прежде всего, рассмотрим систему электродинамических уравнений Максвелла:
(a) , (b) , (1)
(c) , (d) ,
включающую в себя материальные соотношения:
, , ,
описывающие отклик среды на наличие в ней электромагнитных полей. Здесь и - векторы напряженности электрического и магнитного полей, связанные с соответствующими векторами индукции и , - вектор плотности электрического тока, ρ - объемная плотность стороннего заряда, ε0 и μ0 - электрическая и магнитная постоянные, σ, ε и μ - удельная электрическая проводимость и относительные диэлектрическая и магнитная проницаемость среды, соответственно. Принципиальная особенность этих динамических релятивистски инвариантных уравнений (1) состоит в том, что в их структуре заложена отражающая обобщение опытных данных основная аксиома классической электродинамики - неразрывное единство переменных во времени электрического и магнитного полей.
Фундаментальным следствием уравнений Максвелла является вывод о том, что описываемое ими поле распространяется в пространстве в виде электромагнитных волн, скорость которых определяется лишь электрическими и магнитными параметрами этого пространства (например, в отсутствие поглощения ). Совместное решение уравнений системы (1) позволяет также ответить на вопрос, какие это волны и что они переносят, получить аналитическую формулировку закона сохранения электромагнитной энергии:
согласно которому поток электромагнитной энергии идет на компенсацию в данной точке среды джоулевых (тепловых) потерь при электропроводности и изменение электрической и магнитной энергий. При этом характеризующий энергетику данного процесса вектор Пойнтинга плотности потока электромагнитной энергии , связанный с вектором плотности электромагнитного импульса 2, отличен от нуля только там, где одновременно присутствуют электрическое и магнитное поля, векторы и которых неколлинеарны.
Таким образом, в рамках уравнений (1) невозможно представить существование волн, переносящих только электрическую или только магнитную энергию. Кроме того, далеко не ясен вопрос о моменте импульса электромагнитного поля и переносящих его волнах, каким образом это явление соотносится с уравнениями Максвелла. Попытаемся прояснить данную ситуацию, для чего продолжим обсуждение уравнений (1) с целью их модификации для векторных электромагнитных потенциалов.
Понятие векторного потенциала следует из очевидного положения о том, что дивергенция ротора любого вектора тождественно равна нулю. Поэтому магнитный векторный потенциал можно ввести посредством соотношения системы уравнений (1), а электрический - соотношением , описывающим поляризацию локально электронейтральной среды:
а) , (b) . (2)
Однозначность функций вектор-потенциала, т.е. чисто вихревой характер таких полей обеспечивается условием калибровки: . С точки зрения физического смысла рассматриваемые потенциалы следует называть поляризационными потенциалами.
Тогда подстановка соотношения для магнитного векторного потенциала (2a) в уравнение вихря электрической напряженности (1а) приводит к известной формуле связи поля вектора указанной напряженности с магнитным вектор-потенциалом:
, (3)
описывающей закон электромагнитной индукции Фарадея. Здесь не рассматривается электрический скалярный потенциал, формально следующий из (1а): , как не имеющий отношения к рассматриваемым вихревым полям.
При аналогичной подстановке соотношения для электрического векторного потенциала (2b) в уравнение вихря магнитной напряженности (1c) с учетом материальных соотношений получаем в итоге связь этой напряженности с электрическим вектор-потенциалом:
, (4)
где τрел = εε0 /σ - постоянная времени релаксации электрического заряда в среде за счет электропроводности. Таким образом, векторные потенциалы являются первичными полями по отношению к электромагнитным полям, поскольку, согласно соотношениям (3) - (4), электромагнитные поля уравнений системы (1) описываются аналитически временными производными от векторных потенциалов. Другими словами, именно векторные потенциалы порождают вихревые электромагнитные поля, но не наоборот.
Теперь можно убедиться, что представленные результаты позволяют вскрыть потенциальную возможность модификации для векторных потенциалов системы электромагнитных уравнений Максвелла (1), заложенную в их структуре. Объединяя попарно формулы (2a) и (4), соответственно, формулы (2b) и (3), получаем другую, новую систему электродинамических уравнений уже относительно полей электрического и магнитного векторных потенциалов:
(a) , (b) , (5)
(c) , (d) .
Рекомендуем скачать другие рефераты по теме: реферат на тему организация, контрольные работы по математике.
1 2 3 | Следующая страница реферата