Понятие времени и проблема континуума (к истории вопроса)
Категория реферата: Рефераты по науке и технике
Теги реферата: решебник класс, доклад по обж
Добавил(а) на сайт: Кахманова.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Вот что в этой связи пишет Лейбниц Фуше в 1693 г.: «Я настолько убежден в существовании актуальной бесконечности, что не только не допускаю мысли о том, что природа не терпит бесконечного.., а, напротив, считаю, что она повсюду выказывает любовь к нему, дабы тем нагляднее продемонстрировать совершенство творца. Итак, я полагаю, что нет ни одной части материи, которая была бы не скажу только неделимой, но даже не разделенной актуально и, следовательно, любая мельчайшая частица материи должна рассматриваться как мир, наполненный бесчисленным количеством разнообразных созданий» [26, 3, с. 294]14.
Возражая Декарту и его последователям, не допускавшим возможности для конечного существа мыслить актуально бесконечное, Лейбниц в письме к Мальбраншу замечает: «Ответ, что наш ум, будучи конечным, не понимает бесконечного, неправилен, так как мы можем доказать и то, чего мы не понимаем» [26, 3, с. 316]. Не правда ли, эта мысль Лейбница в точности повторяет высказанную Кавальери: хотя бы мы не понимали сущности тех приемов, которыми мы пользуемся, мы тем не менее можем получать с их помощью нужное решение задачи; именно так, справедливо говорит Кавальери, поступают алгебраисты, и математический анализ по своему методу сходен с алгеброй, оперирующей с непостижимыми корнями чисел. Это – целый переворот по сравнению с античной математикой, переворот, основанный на сближении техники вычисления (логистики) и точной науки, приближенного метода вычисления (так понимал метод бесконечно-малых Кеплер) и строго математического доказательства.
Лейбниц, таким образом, допускает актуально бесконечное в тварном мире, а не только в Боге; то, что делимо до бесконечности, должно быть уже актуально разделено на бесконечное числе бесконечно малых единиц, ибо, согласно Лейбницу, возможное должно иметь свое основание в действительном, потенциальное – в актуальном. Здесь Лейбниц занимает позицию, отличную как от античной – аристотелевско-евклидовской, так и от картезианской. В этом отношении интересно проанализировать диалог 1776 г. «Пацидий–Филалету», в котором намечены все ходы мысли, воспроизводившиеся затем Лейбницем на протяжении последующих сорока лет. Диалог посвящен трудностям, связанным с проблемой континуума, которая, по Лейбницу, есть узел, еще никем не развязанный. «Ни Аристотель, ни Галилей, ни Декарт не могли обойти этот узел: один его скрыл, другой оставил неразвязанным, третий разрубил» [26, 3, с. 246]. Диалог построен по классическим канонам жанра: принимается допущение, затем обсуждаются его следствия, и оно отвергается в пользу другого, которое затем обсуждается таким же образом. Первое допущение, которое принимает Лейбниц, принадлежит сторонникам составления непрерывного из неделимых. К ним первоначально, до своего приезда в Париж, принадлежал и сам Лейбниц. Вот это допущение: пространство состоит из точек, а время – из моментов «теперь». Поскольку составление линии из конечного числа точек ведет к очевидным несообразностям, например, к невозможности разделить отрезок пополам, то остается допустить, что «линии состоят из точек, но по числу бесконечных» [26, 3, с. 247]. Однако в этом случае пришлось бы согласиться, что диагональ и сторона квадрата равны, а также что целое равно части. Поскольку это невозможно, делается вывод: линия не состоит из точек, и принимается аристотелево определение континуума как делимого до бесконечности. Актуально бесконечное в математике, таким образом, отвергается. Эту позицию Лейбниц оценивает как «ответ Галилею». Ответ этот гласит: «До обозначения нет никаких точек... Нет точек, линий, поверхностей, т.е. вообще оконечностей (границ, пределов – П.Г.), кроме тех, которые возникают при делении: и в непрерывности нет частей, пока они не созданы делением. Но никогда не осуществляются все деления, какие только осуществимы...» [26, 3, с. 250]. Это – позиция Аристотеля, Евдокса, Декарта, допускающая лишь потенциальную бесконечность.
Однако Лейбниц на этом не останавливается. Хотя, казалось бы, вопрос решен и противоречия сняты, он ставит вопрос о континууме в физике, рассматривая структуру твердых тел и жидкостей и желая теперь возразить Декарту, с которым он только что солидаризировался. «Я не допускаю ни атомов (Гассенди), т.е. совершенно твердого тела, и тонкой материи Декарта, т.е. совершенно жидкого тела» [26, 3, с. 252]. Модель физической непрерывности, по Лейбницу – это тело, повсюду сгибаемое. «Разделение непрерывности надо уподобить не песку, распадающемуся на отдельные песчинки, а бумаге или ткани, которая может образовать складки: хотя число складок ничем не ограничено и они могут быть все меньше и меньше одна другой, однако тело никогда не распадается на точки или наименьшие части» [26, 3, с. 252]. Для Лейбница главное здесь – что «складки» все время остаются протяженными величинами, а не превращаются в «неделимые точки». Однако принципиального отличия от Декарта тут нет, ибо у последнего тоже части материи корпускулы остаются всегда делимыми.
Рассмотрев непрерывность пространства, времени, а затем материи Лейбниц ставит вопрос о непрерывности по отношению к движению и рассматривает две альтернативных точки зрения. Если принять непрерывное движение, то придется признать, что непрерывность состоит из точек, ибо «движение есть смена двух пребываний, которыми тело связано с двумя ближайшими точками в два ближайших момента...» [26, 3, с. 253]. Поскольку же составленность линии из точек уже была отвергнута, то Лейбниц обращается ко второй возможности – движению скачками. «Между промежутками покоя будет происходить моментальное движение скачком» [26, 3, с. 254]. Скачки эти можно мыслить как своего рода «транскреации», т.е. уничтожение тела в одной точке и сотворение его заново в другой, как, по-видимому, решали проблему движения мусульманские математики мутекаллимы: «Движущееся тело Е, пробыв некоторое время в А, исчезает и уничтожается, а в следующий момент снова возникает и возрождается в В» [26, 3, с. 255]. Характерно, что признать первую из двух возможностей, а именно непрерывность движения, Лейбницу мешает убеждение в том, что «движение есть смена двух пребываний», т.е. что оно прерывно по своему существу. И эта посылка представляется Лейбницу настолько само собой разумеющейся, что он не принимает идею непрерывности движения Аристотеля, Лейбница, средневековых физиков, Декарта. Но и «скачки» тоже не удовлетворяют Лейбница, представляются ему таким же «чудом», что и «совершенная твердость атомов, принимаемая Гюйгенсом» [26, 3, с. 256].
Какой же выход видится здесь немецкому философу? Как ни неожиданно это для читателя, только что принявшего к сведению пассаж о невозможности актуально бесконечного в математических и физических объектах, но Лейбниц вновь возвращается к актуально бесконечному, отвергнутому в споре с Галилеем: «Я думаю так: нет такой части материи, которая не была бы актуально разделена на множество частей, и, следовательно, нет столь малого тела, в котором не содержался бы мир бесчисленных творений... Таким образом, и тело, и пространство, и время актуально подразделены до бесконечности» [26, 3, с. 256]. Соответственно теперь отвергается непрерывность движения и признаются уже было отброшенные «скачки», но, правда, с одной оговоркой: эти скачки должны быть «бесконечно малыми», а значит «проскакиваемое» расстояние должно быть меньше любой конечной величины[26, 3, с. 263].
Таков итог размышлений Лейбница: можно было бы сказать, что бытие у него торжествует над становлением, если бы не целый ряд парадоксов, которые ему трудно разрешить.
С известной оговоркой он в конце концов вновь признает и бесконечно малую величину, а именно как «воображаемую»: «В геометрии я допустил бы с эвристической целью бесконечно малые величины пространства и времени, рассматривая их как воображаемые» [26, 3, с. 260].
Можно было бы сказать, что диалог, написанный в 1676 г., еще не вполне зрелое произведение Лейбница, если бы те же самые ходы мысли не были воспроизведены им почти двадцать лет спустя в переписке с Фуше, а затем и в более поздних работах – вплоть до 1716 г. Поэтому нельзя не согласиться с А.П. Юшкевичем, отмечавшим в одной из своих статей непоследовательность Лейбница: «Великий философ и математик высказывал в разное время различные мнения о сущности исчисления бесконечно малых. Иногда, например, он рассматривал дифференциал dx как конечный, но крайне малый отрезок, по крайней мере, пропорциональный конечному отрезку. Очень часто, особенно в более поздние годы жизни, он отзывался о бесконечно малых как об идеальных вещах и понятиях, как об удобных в эвристическом отношении фикциях, результаты применения которых можно, если угодно, получить с помощью строгого доказательства исчерпыванием. Наконец, у него имеется и та мысль, что бесконечно малые суть величины, меньше всякой конечной величины, хотя и не нулевые, величины “несравнимые” в том смысле, что на какую бы конечную величину их ни умножить, результат не будет конечной величиной» [21, с. 14–15]. И действительно, точка зрения Лейбница на бесконечно малую все время неустойчива, потому что он в своей физике и метафизике принимает актуальную бесконечность, что не может не отражаться и на его понимании бесконечного в математике.
В то же время в философии Лейбница идея непрерывности играет существенную роль: актуально существующие метафизические и физические «точки», единицы (монады) составляют своего рода непрерывную цепь, лишенную «промежутков», «разрывов», «скачков». Характерно, что П.А. Флоренский, отвергая идею непрерывности, которая, по его мнению, господствовала в науке и философии XIX в., возводит эту идею прежде всего к Лейбницу15.
Однако лейбницево понимание непрерывности, как мы видели, существенно отличается от традиционного, к которому тяготел Декарт, а впоследствии – Кант: у Лейбница идея непрерывности имеет предпосылкой принятие актуально бесконечного. Так, вводя понятие «незаметных», «бесконечно малых восприятий», возникшее у него по аналогии с математической бесконечно малой, Лейбниц пишет: «Незаметные восприятия имеют такое же большое значение в пневматике, какое незаметные корпускулы имеют в физике... Ничто не происходит сразу, и одно из моих основных и достоверных положений – это то, что природа никогда не делает скачков... Значение этого закона в физике очень велико: в силу этого закона всякий переход от малого к большому и наоборот совершается через промежуточные величины... Точно так же никогда движение не возникает непосредственно из покоя, и оно переходит в состояние покоя лишь путем меньшего движения... Придерживаться другого взгляда – значит не понимать безграничной тонкости вещей, заключающей в себе всегда и повсюду актуальную бесконечность [26, 2, с. 56]. Эти последние слова об актуальной бесконечности кладут водораздел между традиционным принципом непрерывности как бесконечности потенциальной (бесконечной делимости) и лейбницевым толкованием этого принципа.
Философское обоснование по-новому истолкованного им принципа непрерывности Лейбниц предлагает в «Монадологии». Здесь на новом уровне воспроизводится старый парадокс, возникающий при попытке составлять непрерывное из неделимых. С одной стороны, Лейбниц определяет монаду как простую субстанций, не имеющую частей, а значит, нематериальную (все материальное имеет части и делимо). Он поясняет, что «где нет частей, там нет ни протяжения, ни фигуры и невозможна делимость» [26, 1, с. 143]. С другой стороны, Лейбниц говорит, что «сложная субстанция есть не что иное, как собрание или агрегат простых» [26, 1, с. 143]. Выходит, что сложное (т.е. непрерывное) мы получаем из суммы бесконечного числа простых (неделимых), статус которых так же неясен, как и статус математической бесконечно-малой: это и не величины (ибо монады, по Лейбницу, нематериальны, не имеют протяжения), и не «нули» (ибо, как позднее мы узнаем, всякая монада обладает «телом»).
Монада у Лейбница мыслится по аналогии с душой: именно души по определению неделимы. Но тогда выходит, что тело как сложная субстанция составляется из бесконечного числа душ-субстанций простых. Пытаясь выйти из этого затруднения, Лейбниц прибегает к метафоре: сравнивает тела с «прудом, полным рыбы» (где рыбы – это, надо думать, монады)16. Но в таком случае что такое та «вода», в которой обитают «рыбы»? Если реальны только монады, как и заявляет Лейбниц, то «вода» тоже состоит из новых неделимых и так до бесконечности.
Противоречие не разрешается. Для его разрешения Лейбниц прибегает еще к одному средству: рассматривать материю не как субстанцию, а как «субстанциат», подобный армии или войску. «В то время как ее рассматривают так; будто она есть некая вещь, на самом деле она есть феномен, но вполне истинный, из которого наше восприятие создает единство» [30, S. 624].
Рассмотрение материи как «феномена», пусть даже «хорошо обоснованного» (хотя самого этого обоснования Лейбниц так и не смог предъявить), означает – правда на другом языке – возвращение к предпосылкам Аристотеля, трактовавшего материю как возможность, а не действительность. Но для последовательного проведения такой точки зрения необходимо отказаться с от понятия актуальной бесконечности применительно к конечному (тварному) миру: ведь Аристотель в свое время потому и определил материю как бесконечно делимое, что она принадлежала у него к сфере возможного. Лейбниц же, объявляя материю феноменом, в то же время сохраняет в силе вышеприведенные тезисы: 1) в каждой части материи «содержится» актуально бесконечное число монад и 2) всякая душа обладает телом. Последнее утверждение совершенно лишено смысла, если считать, что тело – это феномен; первое, впрочем, тоже, хотя, может быть, это и не так очевидно.
Как видим, даже Лейбницу не удалось разрешить парадоксы актуальной бесконечности и последовательно провести принцип непрерывности в математике. Вопрос остался открытым и в философии. К нему во второй половине XVIII в. вновь обратились как математики, так и философы.
Проблема континуума у Канта
В философии проблему непрерывности попытался разрешить Кант, столкнувшись с затруднениями, которые эта проблема породила у Лейбница, с одной стороны, и у математиков, с другой. Рождение трансцендентального идеализма в немалой степени было обусловлено необходимостью справиться с парадоксами актуальной бесконечности. В своей первой, еще студенческой работе «Мысли об истинной оценке живых сил» Кант затрагивает самый нерв вопроса, так и не решенного Лейбницем: как связать между собой метафизические неделимые (бытие) и физический мир, располагающийся в пространстве (становление). Мир бытия Лейбниц порой характеризует как «внутреннее», а чувственный мир – как «внешнее». Монады, по Лейбницу, «не имеют окон» и , таким образом, не имеют «выхода» друг к другу; их деятельность согласована лишь через божественную монаду – посредством предустановленной гармонии. Не вполне ясно также, как понимать соотнесенность монад с «внешним» по отношению к ним материальным миром; мы уже видели, какими способами пытался Лейбниц разрешить этот вопрос, важнейшим аспектом которого является связь души с телом.
Именно с этого вопроса начинает молодой Кант: «...В метафизике, – пишет он в 1746 г., – трудно представить себе, каким образом материя в состоянии порождать в душе человека представления некоторым воистину действенным образом (т.е. физическим действием)... Подобная же трудность возникает и тогда, когда стоит вопрос о том, в состоянии ли также и душа приводить в движение материю... Вопрос о том, в состоянии ли душа вызывать движения, т.е. обладает ли она движущей силой, приобретает такой вид: может ли присущая ей сила быть предназначена к действию вовне, т.е. способна ли она вовне себя воздействовать на другие существа и вызывать изменения? На этот вопрос можно с полной определенностью ответить тем, что душа должна быть в состоянии действовать вовне на том основании, что сама она находится в определенном месте. Ибо если разберем понятие того, что мы называем местом, то найдем, что оно указывает на взаимные действия субстанций» [31, 1, с. 66–67]. Вопрос поставлен точно. В самом деле, коль скоро «метафизическая точка» имеет жесткую связь с определенным местом, то она уже тем самым не абсолютно самозамкнута: в противном случае субстанция-монада существовала бы вне всякой связи с каким-либо телом (а что монады не могут существовать без тела, на этом Лейбниц всегда настаивал) и, стало быть, по словам Канта, «нигде во всем мире не находилась бы» [31, 1, с. 68]. Протяжение, таким образом, по мысли Канта, есть продукт действия субстанции вовне; так молодой философ интерпретирует Лейбница. «Ибо без этой силы нет никакой связи, без связи – никакого порядка, без порядка нет никакого пространства» [31, 1, с. 69].
Как видим, в своем рассуждении Кант опирается на лейбницево определение пространства как порядка сосуществования. Однако, постулируя «воздействие субстанций вовне». Кант не разъясняет, как следует понимать это воздействие. Судя по всему, этот вопрос не переставал занимать Канта на протяжении целого десятилетия. В 1756 г. он предпринимает еще одну попытку его разрешения в магистерской диссертации «Применение связанной с геометрией метафизики в философии природы». За год до того, в 1755 г. была опубликована работа Канта «Всеобщая естественная история и теория неба», в которой он применил Ньютонову теорию тяготения для объяснения генезиса мироздания. Теперь с помощью ньютоновской динамики философ приступил к разрешению давно мучившей его антиномии неделимого (монады) и непрерывного (протяжения). На сей раз он рассматривает соотношение физики (динамики) и математики, оставляя вне поля зрения метафизическую сущность монад. Задача, которую при этом ставит перед собой Кант, состоит в доказательстве, что «существование физических монад согласно с геометрией» [31, 1, с. 319]. Альтернатива – метафизика или геометрия – заострена у Канта еще одним дополнительным обстоятельством: он вместе с Ньютоном признает теорию тяготения как действия на расстоянии, а тяготение невозможно объяснить с помощью одной только геометрии. Кант пытается фундировать Ньютонову теорию всемирного тяготения с помощью Лейбницевой метафизики, хотя сам создатель монадологии считал ньютонову идею совершенно неприемлемой17. «Метафизика, – пишет Кант, – без которой, по мнению многих, вполне можно обойтись при разрешении физических проблем, одна только и оказывает здесь помощь, возжигая свет познания. В самом деле, тела состоят из частей и... важно выяснить, как именно они составлены из этих частей: наполняют ли они пространство одним лишь сосуществованием этих первичных частей или через взаимное столкновение сил. Но каким образом в этом деле можно связать метафизику с геометрией, когда, по-видимому, легче грифов запрячь вместе с конями, чем трансцендентальную философию18 сочетать с геометрией? Ибо если первая упорно отрицает, что пространство делимо до бесконечности, то вторая утверждает это с такой же уверенностью, с какой она обычно отстаивает остальные свои положения. Первая настаивает на том, что пустое пространство необходимо для свободных движений; вторая же, напротив, решительно его отвергает. Первая указывает на то, что притяжение, или всеобщее тяготение, едва ли можно объяснить одними лишь механическими причинами, но что оно имеет свое начало во внутренних силах, присущих телам в состоянии покоя и действующих на расстоянии; вторая же относит всякое такое предположение к пустой игре воображения» [31, 1, с. 318].
Мы привели этот отрывок целиком ввиду его важности для нашей темы: Кант здесь рассматривает проблему континуума, как она ставится в математике, имеющей дело с миром лишь возможного (становление), и в физике, с трудом отделимой от метафизики, которая претендует на то, что именно она раскрывает законы самого бытия. На уровне бытия континуум мыслится как дискретный, на уровне становления – как непрерывный. Однако дело осложняется тем, что определенная школа физики – в частности картезианская - при объяснении природы допускала только принцип непрерывности, не признавая ни атомов, ни пустоты, ни сил тяготения. Что же касается метафизики, то сюда Кант, как видно, относит Ньютона и его последователей, ибо именно они принимают пустое пространство как условие возможности движения атомов, а также тяготение как действие на расстоянии. Хотя Ньютон, как известно, дистанцировался от метафизики (хорошо известен его афоризм «гипотез не изобретаю»), однако Кант характеризует его подход как метафизический, имея в виду то обстоятельство, что Ньютон, как и Лейбниц, вводит в свою динамику понятие силы и не ограничивается лишь установлением механических законов, как это делал Декарт. Но как примирить таким образом понятую метафизику19 с математикой, атомизм в физике с принципом непрерывности в математике?
Кант согласен с Декартом и большинством математиков в том, что пространство делимо до бесконечности и не состоит из простых частей. Но в то же время он подчеркивает, что «каждый простой элемент тела, или монада, не только существует в пространстве, но и наполняет пространство, сохраняя, однако, свою простоту» [31, 1, с. 323]. Как видим, в отличие от Декарта, Кант не признает, что пространство есть субстанция. Здесь он остается последователем Лейбница и считает субстанциями неделимые монады. Физические монады, по Канту, заполняют пространство не множеством своих частей (таковых у неделимых начал нет), а сферой своей деятельности, сущность которой – притяжение и отталкивание: притяжение создает единство, связь физических тел, а отталкивание – их разъединенность, обособленность. Таким путем Кант ищет выход из трудности, связанной с проблемой непрерывного и неделимого, т.е. в данном случае математического и физического континуумов.
Вот предложенный им выход: из непрерывности (бесконечной делимости) пространства, занимаемого элементом, не вытекает делимость самого элемента. «Из доказанного выше, – подытоживает Кант, – с полной очевидностью следует, что ни геометр не ошибается, ни то мнение, которого придерживается метафизик, не уклоняется от истины, поэтому неизбежно должен быть ошибочным взгляд, который оспаривает оба эти мнения и согласно которому ни один элемент, поскольку он абсолютно простая субстанция, не может занимать пространства, не теряя своей простоты» [31, 1, с. 324]. Ошибается, по Канту, тот, кто не может примирить между собой два утверждения – метафизики: «Всякая сложная субстанция состоит из простых частей, и вообще существует только простое и то, что сложено из простого» – и математики: «Ни одна сложная вещь в мире не состоит из простых частей, и вообще в мире нет ничего простого» [31, 3, с. 270–271].
Этот ошибающийся – сам Кант 25 лет спустя после написания работы «Применение связанной с геометрией метафизики в философии природы». Ибо именно он и сформулировал в «Критике чистого разума» эти два утверждения как абсолютно непримиримые – как антиномию чистого разума. И вот как он теперь, в 1781 г., оценивает свою прежнюю попытку примирения этих двух утверждений: «Впрочем, монадисты ловко пытаются обойти это затруднение, именно они утверждают, что не пространство составляет условие возможности предметов внешнего наглядного представления (тел), а, наоборот, предметы внешнего наглядного представления и динамическое отношение между субстанциями вообще составляют условие возможности пространства» [31, 3, с. 275]. В качестве примера Кант мог бы сослаться на свою собственную работу 1756 г., только что рассмотренную нами, ибо там он, рассуждая как монадист, как раз и определял пространство как «явление внешнего отношения субстанций» [31, 1, с. 324], как «сферу деятельности монады» [31, 1, с. 325].
Размышления над проблемой континуума, таким образом, сыграли первостепенную роль в пересмотре Кантом принципов рационализма XVII–XVIII вв. и создании системы критической философии, где переосмыслено центральное в метафизике XVII в. понятия субстанции и фундаментом всей системы знания становится не субстанция, а субъект. Переход от субстанции к субъекту совершил уже английский эмпиризм в лице Локка и особенно Юма; но они имели в виду психологического, т.е. эмпирического субъекта в его индивидуальности. Кант ставит в центр своего учения понятие трансцендентального субъекта, освобождаясь тем самым от психологизма в теории познания. В результате эмпирический мир, мир опыта – как внешнего (природа как предмет естествознания), так и внутреннего (душа как предмет эмпирической психологии) существует у Канта лишь в отношении к трансцендентальному субъекту, конструирующему этот мир с помощью априорных форм чувственности (пространства и времени) и априорных форм рассудка (категорий). Определения, приписывавшиеся ранее материальной субстанции – пространственная протяженность, фигура, временная продолжительность, движение – суть, по Канту, продукт деятельности трансцендентального субъекта. В мире природы нет места тому, что существует в себе и через себя, здесь все определяется связью механических причин, т.е. другим и через другое, поскольку и сам этот мир существует лишь через отношение к трансцендентальному Я. Отвергая понятие субстанции применительно также и к индивидуальной душе. Кант рассматривает ее в теоретической философии лишь как явление, конструируемое посредством внутреннего чувства. Однако реликты субстанций как самостоятельных сущих, не зависящих не только от индивидуального, но и от трансцендентального субъекта, сохраняются у Канта в виде непознаваемых вещей в себе, аффицирующих нашу чувственность и таким образом порождающих ощущения. Недоступные теоретическому познанию, вещи в себе принадлежат к сверхчувственному миру – сфере свободы, т.е. разума практического. Человек как существо нравственное несет в себе те черты, которыми традиционно наделялись духовные субстанции – разумные души, хотя онтологический статус разумной души у Канта совсем иной.
Рекомендуем скачать другие рефераты по теме: конспект, классификация реферат.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата