Применение гидролокатора бокового обзора для прокладки и контроля положения подводного трубопровода
Категория реферата: Рефераты по науке и технике
Теги реферата: изложение 4 класс, защита дипломной работы
Добавил(а) на сайт: Bogojavlenskij.
Предыдущая страница реферата | 1 2
широким выбором мощных лебедок, включая портативную лебедку для кабеля длиной до 250 м;
широким выбором возможных принтеров, если требуется документировать записи на бумаге;
конфигурацией для автоматического подводного аппарата, доступной с интерфейсов для цифровой телеметрии.
Указанные технические характеристики делают двухчастотный гидролокатор Гео-СМ с рабочими частотами 325/780 кГц (или 102/325 кГц для съемок на большой площади) оптимальным выбором среди профессиональных ГБО для рассматриваемых задач [3].
Автоматизированная инспекция трубопровода
Рассмотрим особенности автоматизированной инспекции положения трубопровода на примере программного продукта Coda PI из пакета программ GeoSurvey Productivity Suite разработки английской фирмы CodaOctopus [4].
Автоматизированная интерпретация изображения ГБО для определения участков провисания трубопровода является большим преимуществом акустической съемки, значительно повышающим эффективность контроля трубопроводов. В отличие от интерпретации оператором-геофизиком, такая интерпретация не страдает провалами внимания и спадом производительности в ночное время. Она опирается на формализованные критерии, причем разработчики CodaOctopus предпочитают опираться на методы математической статистики и теории вероятностей, позволяющие количественно оценить производительность системы. Однако интерпретация человеком опирается на более широкий контекст. Это позволяет распознать ситуацию, связанную с возможными дорогостоящими мероприятиями по спуску подводного аппарата и мобилизации ремонтной команды, и сконцентрировать внимание на таких участках. Поэтому программа CodaOctopus имеет очень развитый и хорошо интерпретируемый графический интерфейс, позволяющий создать эффективный человеко-машинный комплекс. Автоматическая интерпретация при этом используется как фильтр данных, где внимание человека привлекается к участкам, где вероятность обнаружения провисания достаточно велика. Алгоритмы фильтрации основаны на отслеживании с помощью робастной статистики более 30 различных переменных, описывающих состояние трубопровода. Используются также другие методы обработки изображений. Например, отражение высокой интенсивности с отбрасываемой глубокой акустической тенью отслеживается с прогнозированием положения трубы. Этот метод, реализованный в программе, незаменим в случае, когда труба на подводном участке местами погребена под грунтом, а местами выходит на поверхность дна (фото 4).
Перед началом съемки по оценке состояния трубопровода в программу Coda PI должны быть введены соответствующие исходные данные. Так, после ввода значения диаметра трубы появляется возможность по длине отбрасываемой тени в реальном времени вычислять оценку высоты провисания трубы, что отображается в отдельном окне на дисплее.
Вместе с тем, естественно, Coda PI имеет ряд ограничений. Первое — это предположение ровного дна, типичное для всех гидролокаторов бокового обзора. Если труба уложена в углубление с наклонными стенками, то отбрасываемая ею акустическая тень на наклонную стенку углубления и сильное отражение сигнала от этой стенки не будут давать возможность оценить ее высоту и провисание. Второе ограничение — это ненадежная интерпретация изображений труб диаметром менее 15 см, которые вызывают трудности и у человека. Чем выше рабочая частота ГБО, тем выше разрешение и качество изображения. Поэтому для труб малого диаметра следует рассматривать высокочастотные варианты ГБО, такие как модель Гео-СМ с рабочей частотой 780 кГц.
Недавняя разработка, осуществленная фирмой CodaOctopus совместно с компанией Fugro-Geoteam, позволила создать на базе Coda PI «автопилот» для дистанционно управляемого подводного аппарата McCartney Focus 400, предназначенного для операций по контролю трубопроводов. Программа Coda PI отслеживает положение трубопровода и посылает данные о расстоянии подводного аппарата до трубы, что позволяет выдерживать это расстояние постоянным [4].
Гидролокаторы бокового обзора становятся в последнее время широко востребованным гидрографическим оборудованием. Внедрение таких систем позволит более качественно и оперативно осуществлять инспекцию подводных участков трубопроводов, что безусловно позитивно отразится на их безопасности и эффективности эксплуатации.
Список литературы
1. Fish J.P., H.A.Carr, 1990. Sound Underwater Images: A guide to the generation and interpretation of side scan sonar data. Lower Cape Publishing, Orleans, США, 190с.
2. Гидролокатор бокового обзора Гео-СМ. Руководство пользователя. Центр «Геоматика», Москва, 2003.
3. Product Survey on Side-Scan Sonar. Hydro International, Vol.8, No. 3, April 2004, pp. 36-39.
4. McFadzean, A, R.Ceri. An Automated Side Scan Sonar Pipeline Inspection System. UnderWater Magazine. Vol.8, No.6, November/December 2000.
Скачали данный реферат: Энтин, Копылов, Parfjon, Silantij, Tolbanov, Kotik.
Последние просмотренные рефераты на тему: век реферат, дитя рассказ, сочинения по русскому языку, решебник по физике.
Предыдущая страница реферата | 1 2