Теория движения космических обьектов
Категория реферата: Рефераты по науке и технике
Теги реферата: реферат орган, мировая экономика
Добавил(а) на сайт: Фунтусов.
Предыдущая страница реферата | 1 2 3 4
(10)
Вычисленная по формуле (10) величина называется параболической скоростью. Получив такую скорость ,космический аппарат движется по параболе и уже не возвращается к центру тяготения .Когда скорость (10) сообщается в вертикальном направлении, траекторией является прямая линия, но и в этом случае скорость называют параболической .Между скоростью освобождения и круговой скоростью в любой точке существует простая зависимость
(11)
Значение скорости освобождения у поверхности Земли носит название второй космической скорости и составляет 11,186 км/c. На высоте h=200 км скорость освобождения сост. 11,015 км/c .
Воспользовавшись формулой (10) ,мы можем теперь записать основную формулу (3) для скорости в центральном поле тяготения так :
4.Гиперболические траектории.Если космический аппарат получит скорость v0 , превышающую параболическую ,то он также «достигнет бесконечности» ,но при этом будет двигаться уже по линии иного рода - гиперболе.При этом скорость апппарата в бесконечности (v¥) уже не будет равна нулю. Физически это означает ,что по мере удаления аппарата его скорость будет непрерывно падать ,но не сможет стать меньше величины v¥ ,которую можно найти ,приняв в формуле (12) r=¥ .Получим
Величину v¥ назывют по-разному : остаточная скорость, гиперболический избыток скорости и т.д.
Гиперболическая траектория вдали от центра притяжения становится почти неотличимой от двух прямых линий ,называемых асимптотами гиперболы .На большом расстоянии от центра притяжения гтперболическую траекторию приближенно можно считать прямолинейной.Для гиперболических и параболических орбит справдливы как и для эллиптичеких орбит ,формулы (7) и (7а).
В заключение заметим,что пассивное движение в центральном поле тяготения часто называют кеплеровским движением, а эллиптичекие, параболические и гиперболичекие траектории обьединяются общим названием кеплеровских орбит.Всегда важно помнить ,что любая кеплерова орбита расположена в плоскости , проходящей через центр притяжения.Положение этой плоскости в пространстве не изменяется.
Скачали данный реферат: Fetinija, Kaufman, Kondrakov, Gelasija, Петров, Февронья.
Последние просмотренные рефераты на тему: реферат підприємство, решебник 10 11, quality assurance design patterns системный анализ, скачать контрольную.
Предыдущая страница реферата | 1 2 3 4