Волоконный оптический гироскоп
Категория реферата: Рефераты по науке и технике
Теги реферата: антикризисное управление предприятием, скачать реферат по истории
Добавил(а) на сайт: Goracij.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
В типичных экспериментальных конструкциях гироскопов используется катушка с R = 100 мм при длине волокна L = 500 м . Обнаружение скорости вращения в 1 град/ч требует регистрации фазы с разрешением порядка 10-5 рад. Это показано на рис. 1.4., где изображены значения фазового сдвига в функции угловой скорости вращения контура и величины LR при l = 0,63 мкм .
Оптические интерференционные системы фазовой регистрации с такой чувствительностью хорошо известны, однако в гироскопах существуют некоторые особые моменты, связанные с регистрацией фазы. Первый связан с тем фактом, что зачастую гироскоп работает с номинальной почти нулевой разностью хода, и для малых изменений в относительном значении фазы имеет место пренебрежимо малое изменение интенсивности на выходе.
Рис 1.4. Фаза Саньяка в угловой скорости вращения для различных значений параметра LR.
Работа при смещении фазы в 90° максимизирует чувствительность, однако это вносит некоторую невзаимность для двух направлений распространения лучей в гироскопе, т. к. фаза луча, распространяющегося по часовой стрелке, отличается от фазы луча, распространяющегося против часовой стрелки, в отсутствии вращения.
Свойство взаимности - это второй важный момент в ВОГ. Фазовая невзаимность в ВОГ определяется дифференциальной разностью фаз встречно бегущих лучей. Любая фазовая невзаимность (разность фаз) для двух направлений дает изменения в показаниях гироскопа. Если невзаимность является функцией времени, то имеет место некоторый временной дрейф в показаниях гироскопа. Волокно длиной 500 м дает фазовую задержку порядка 1010 рад. Таким образом, для того чтобы зарегистрировать скорость вращения 0,05 град/ч, нужно, чтобы пути распространения противоположно бегущих лучей согласовывались с относительной точностью до 10-17 рад.
Следует, кроме того, отметить, что сам принцип действия волоконного оптического гироскопа основан на невзаимном свойстве распространения встречных волн во вращающейся системе отсчета (появление разности фазовых набегов двух лучей при вращении). Поэтому несомненна важность анализа невзаимных эффектов и устройств в ВОГ (по меньшей мере, хотя бы для определения точности прибора).
Применительно к ВОГ анализ принципа взаимности удобно проводить для цепи с четырьмя входами и выходами . Для оптического волновода четыре входа соответствуют вводам излучения вдоль двух взаимно перпендикулярных направлений поляризации на каждом конце волокна. Соответствующие входы и выходы определяются вдоль идентичных поляризационных осей.
Отсюда следует, что в случае ввода излучения с исходным направлением поляризации Х свет, выходящий с ортогональным направлением поляризации У, будет обладать различными набегами фазы в каждом направлении распространения, а свет, выходящий с исходным направлением поляризации X, будет обладать одинаковыми набегами фазы для каждого направления распространения.
В этом часть требований, налагаемых интерпретацией теоремы взаимности Лоренца, которая постулирует, что в случае линейной системы оптические пути в точности взаимны, если данная входная пространственная мода оказывается такой же на выходе.
Одним из параметров пространственной моды является поляризация; второй параметр также должен быть определен, например пространственное распределение (расположение) моды. Следовательно, на конце контура ВОГ должны быть как поляризационный фильтр (селектирующий исходную поляризацию), так и пространственный фильтр, что будет удовлетворять принципу взаимности Лоренца .
Эти довольно простые устройства в конструкции ВОГ (при условии, что они могут быть реализованы с достаточной точностью) будут гарантировать условия взаимности в системе, но только в том случае, если выполняется условие линейности. Если же нелинейности значительны, то ВОГ будет обладать взаимностью в том случае, если имеется точная симметрия относительно средней точки волоконного контура. Это условие подразумевает, что энергия, вводимая в каждый конец контура, одинакова и что свойства волокна равномерно распределены (или по крайней мере симметричны).
Мощность оптического излучения, вводимого в волокно, столь мала (всегда меньше чем 1...2 мВт), что, казалось бы, нелинейностями можно пренебречь. Однако чувствительность ВОГ к невзаимностям чрезвычайно высока и нелинейные эффекты (в частности, эффект Керра) приводят к заметным не взаимностям, эквивалентным скорости вращения выше 1 град/ч . В оптическом волокне имеет место вращение плоскости поляризации линейно-поляризованного света под действием внешнего магнитного поля (эффект Фарадея).
Вращение Фарадея — это другой невзаимный эффект. В случае линейно-поляризованного света полное вращение зависит от линейного интеграла тока, взятого по оптическому пути. В случае ВОГ этот интеграл равен нулю в магнитном поле Земли. Однако, более тщательное изучение взаимодействия света в волокне и магнитного поля вдоль волокна указывает на то, что истинным источником вращения является индуцированное круговое двойное лучепреломление и что упомянутый выше простой подход оказывается полезным только в том случае, если обе круговые компоненты поляризации (правая и левая) обладают одинаковыми амплитудами. Это справедливо только для случая линейно-поляризованного света.
При распространении света в волокне имеют место все возможные состояния поляризации и процент пребывания света в каждом собственном круговом поляризационном состоянии Фарадеевского ротатора изменяется вдоль оптического пути случайным образом. Это приводит в результате к определенной разности фаз для двух направлений распространения линейно-поляризованной моды на выходе.
Таким образом, ВОГ весьма чувствителен к магнитному полю Земли, и при конструировании ВОГ для измерения скорости вращения требуется магнитное экранирование (или обеспечение линейной поляризации света на всем пути в волокне). Предполагая, что магнитное поле Земли равно 27 A*m2 и считая, что компенсация поля отсутствует на 5% длины волокна, можно получить значение отклонения фазы, которое эквивалентно скорости вращения Земли.
Вышеизложенные моменты включали невзаимные эффекты, индуцированные в волокне; однако, уже даже первые этапы при конструировании ВОГ с точки зрения сохранения взаимности в системе регистрации должны заключаться в том, чтобы обеспечить одинаковую длину оптических путей в ВОГ.
Из рис. 1.3. видно, что эта конфигурация не обладает свойством взаимности, так как пучок света, распространяющийся по часовой стрелке, проходит через делитель света дважды, а пучок света, распространяющийся против часовой стрелки, отражается от светоделителя дважды. Но в то же время взаимный оптический выходной путь от чувствительного контура идет в направлении обратно к источнику (от светоделителя к диоду), т. е. вдоль входного оптического пути.
Следовательно, добиться взаимности в системе регистрации можно, если поместить второй расщепитель пучка вдоль входногo оптического пути (рис. 1.5.).
Диапазон скоростей вращения, которые измеряются высокочувствительным гироскопом инерциальных систем управления, простирается от 0,1 град/ч до 400 град/ч. При LR = 100 м этим значениям скорости соответствует диапазон изменения фазы от 10 до 10 рад (рис.1.4.).
Рис 1.5. Схема ВОГ с постоянным смещением разности фаз.
К настоящему времени уже затрачены значительные усилия на увеличение чувствительности прибора к низким скоростям, и в то же время весьма мало внимания уделяется проблемам, связанным с увеличением требуемого динамического диапазона.
Как уже отмечалось, в случае необходимости измерения больших изменений интенсивности для данного изменения фазы нужно внести фазовый сдвиг p/2, т. е. интерферометр должен работать в режиме квадратуры. В этом режиме связь между изменениями интенсивности и изменениями фазы является линейной (до 1%) только до максимальных отклонений фазы в 0,1 рад. Компенсация нелинейности может быть осуществлена в самой системе регистрации, однако лишь до максимального отклонения фазы порядка 1 рад.
Существует ряд способов регистрации фазы, которые могут быть использованы при конструировании ВОГ.
Наиболее распространены схемы, где используется статическая разность фаз в 90° между двумя лучами и схемы с переменной разностью фаз в 90°.
Статическая невзаимная разность фаз между лучами, распространяющимися по часовой и против часовой стрелки, может создаваться, например, с помощью элемента Фарадея, размещаемого на одном конце волоконного контура ( рис. 1.5.). Изменения регистрируемой интенсивности на взаимном выходе соответствуют изменениям в значении относительной фазы для двух лучей, обегающих контур.
Этот способ имеет ряд недостатков. Небольшие изменения в интенсивности излучения источника эквивалентны паразитным изменениям фазы, а изменения в смещении на 90° также превращаются в эквивалентную считываемую скорость вращения.
Основываясь на принципах смещения фазы можно предложить другой принцип регистрации обладающий более высокой чувствительностью.
1.3. Модель шумов и нестабильностей в ВОГ.
Волоконный оптический гироскоп представляет собой достаточно сложную оптико-электронную систему. При конструировании реального прибора оптические элементы и электронные устройства должны выбираться и компоноваться так, чтобы минимизировать влияние внешних возмущений (температурных градиентов, механических и акустических вибраций, магнитных полей и др.). В самом приборе, кроме того, имеет место ряд внутренних источников шумов и нестабильностей. Условно эти шумы и нестабильности можно разделить на быстрые и медленные возмущения. Быстрые возмущения оказывают случайное кратковременное усредненное влияние (секунды) на чувствительность ВОГ; они отчетливо проявляются при нулевой скорости вращения (кратковременный шум). Медленные возмущения вызывают медленный дрейф сигнала, приводящий к долговременным уходам в считывании показаний ВОГ (долговременный дрейф).
Обобщенная модель источников шумов и нестабильностей в ВОГ показана на рис. 1.6.
Рис 1.6. Обобщённая модель шумов и нестабильностей в ВОГ.
Если исключить влияние всех источников шумов и нестабильностей в ВОГ, что, конечно возможно лишь в принципе, то всегда остаются принципиально неустранимые шумы - так называемые квантовые или фотонные шумы; их называют также дробовыми шумами. Эти шумы появляются лишь в присутствии полезного оптического сигнала на входе фотодетектора и обусловлены случайным распределением скорости прихода фотонов на фотодетектор, что приводит к случайным флуктуациям тока фотодетектора. В этом случае чувствительность (точность) ВОГ ограничивается лишь дробовыми (фотонными) шумами. Чувствительность (точность) ВОГ, определяемая дробовыми (фотонными) шумами, как и всяких других оптических информационно-измерительных систем, является фундаментальным пределом чувствительности (точности) прибора. Фотонные шумы являются следствием квантовой природы светового излучения. Применительно к оптическим системам передачи информации предельная помехоустойчивость этих систем, обусловленная фотонными шумами, была вычислена в [2].
Следуя работам [1,2], проведем оценку фундаментального предела чувствительность (точности) ВОГ.
Уровень фотонных шумов зависит от интенсивности оптического излучения, падающего на фотодетектор, и определяется флуктуациями интенсивности оптического излучения.
Оценка предела чувствительности, обусловленной дробовым шумом, может измениться под влиянием действия ряда факторов.
Первым является квантовая эффективность фотодетектора, уменьшение которой приводит к уменьшению отношения сигнал-шум. Другой фактор заключается в том, что подходящим образом взвешенная средняя мощность, попадающая на фотодетектор, определяет уровень дробового (фотонного) шума, и она может быть меньше, чем максимальная мощность. Однако не всегда ясно, как проводить процедуру взвешивания. Между оценкой и достигаемым пределом дробового шума может быть разница примерно в 2 раза.
Существуют также другие более слабые расхождения, определяемые особенностями процесса детектирования. Кратковременная чувствительность ВОГ, приближающаяся к указанному квантовому пределу, была отмечена в работах [1,2]. Подобная чувствительность может быть достигнута при тщательном уменьшении всех видов других шумов до очень низкого уровня. Например, тепловой шум усилителя можно уменьшить, если соответствующим образом выбрать сопротивление нагрузки фотодиода; кроме того, можно использовать усилитель с низким коэффициентом шума; сейчас уже достигнут коэффициент шума менее 1 дБ. Другого вида шумы и нестабильности в ВОГ можно уменьшить или компенсировать способами, рассмотренными в гл. 3.
Рассмотрим обобщенную модель шумов и нестабильностей ВОГ. Дадим краткую характеристику основных возмущений реального ВОГ.
Одним из главных источников шума в системе ВОГ является обратное рэлеевское рассеяние в волокне, а в некоторых системах еще и отражение от дискретных оптических элементов, используемых для ввода излучения в систему. Физически эти шумы появляются
Рекомендуем скачать другие рефераты по теме: закон реферат, рефератов.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата