Восстановление эталона циклических сигналов на основе использования хаусдорфовой метрики в фазовом пространстве координат
Категория реферата: Рефераты по науке и технике
Теги реферата: бесплатные тесты, скачати реферат
Добавил(а) на сайт: Дрёмин.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Шаг 9. Присваиваем .
Шаг 10. Если , то возвращаемся к шагу 3.
Результаты моделирования подтверждают эффективность рассмотренного алгоритма для имитации реальных циклических сигналов (рис. 1).
Рис. 1. ЭКГ- сигнал, порожденный моделью (6): по одному эталону (а); по двум эталонам (б)
Метод оценки эталона по искаженной реализации. Пусть циклический сигнал (6) представлен последовательностью дискретных значений, наблюдаемых в течение циклов. Предположим, что для каждого -го значения имеется оценка производной . Выполнив нормировку
,
сформируем множество точек, принадлежащих траектории наблюдаемого сигнала в двумерном нормированном фазовом пространстве .
Пусть нам известны номера точек , соответствующие началам
каждого -го цикла ( алгоритм определения номеров в данной статье не рассматривается). Тогда множество можно разбить на подмножеств нормированных векторов , концы которых лежат на фазовых траекториях отдельных циклов.
Будем оценивать расстояние между любыми двумя подмножествами и , хаусдорфовой метрикой [11]
, (8)
где - евклидово расстояние между точками и .
Назовем опорным циклом подмножество векторов , которое имеет минимальное суммарное расстояние (8) с остальными подмножествами
, (9)
и будем оценивать эталон (средний цикл) путем усреднения точек различных траекторий, расположенных в окрестности точек опорного цикла.
С этой целью проведем селекцию траекторий, подлежащих усреднению, определив
подмножество тех траекторий, хаусдорфово расстояние которых до опорной меньше заданной величины , т.е. . Для улучшения оценки представим опорный цикл и остальные циклы последовательностью расширенных векторов , которые, помимо нормированных фазовых координат , содержат дополнительную компоненту . Величина вычисляется в каждой -й точке -й траектории по формуле
,
где - номер первой точки -й траектории, состоящей из точек.
Введение дополнительной компоненты позволяет при усреднении точек оценивать их близость не только с точки зрения значений фазовых координат , но и с точки зрения синхронности во времени. Для этого предлагается определять евклидово расстояние между расширенными векторами опорной траектории и расширенными векторами остальных траекторий , а для оценки последовательности точек среднего цикла воспользоваться соотношением
, (10)
где - точка, лежащая на -той траектории (не являющейся опорной), которая находится на минимальном евклидовом расстоянии от точки опорной траектории :
.
Последовательность векторов , вычисленная согласно (10), дает оценку ненаблюдаемого эталона в фазовом пространстве, а соответствующая последовательность - оценку эталонного цикла во временной области (рис. 2).
Рекомендуем скачать другие рефераты по теме: отчет по практике, решебник 11 класс.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата