Вторжение космических тел в атмосферу Земли
Категория реферата: Рефераты по науке и технике
Теги реферата: доклад по обж, bestreferat
Добавил(а) на сайт: Рубашкин.
Предыдущая страница реферата | 1 2
A=pre2 -площадь поперечного сечения метеороида (площадь миделя),
z - высота, отсчитываемая от уровня моря,
t - время ,
CD - коэффициент сопротивления воздуха ,
R3 - радиус Земли.
Изменение плотности воздух с высотой будем находить по барометрической формуле:
гдеr -плотность на уровне моря. Коэффициент CD можно считать зависящим от числа Кнудсена, причём он убывает с высотой и меняется в пределах 2>CD>0.92 при изменении Kn от 10 до 0.1.
Систему (4.1)-(4.3) нужно решать в предположении, что начальный момент времени при t=0 заданы ze=z, Qe=Q, ve=v, me=m, то есть параметры входа метероида. За координату z, можно принять ту высоту, где согласно (4.1) сила тяготения Земли выравнивается с сопротивлением, то есть когда уравнение (4.5) при заданных m=me, v=ve, можно считать за определение. Пренебрежём также изменением угла, то есть примем Qe=Q (это не внесёт погрешностей, ибо есть малая величина для диапазона скоростей от 11 до < 70 км/с
(< 0.001 c-1).
После интегрирования уравнения (4.1) при условии пренебрежения силой mg sinQ и для z>H. Это означает, что скорость тела практически не меняется.
Используя несложную компьютерную технику, систему (4.1)-(4.3) можно проинтегрировать с помощью любого подходящего численного метода, например метода Эйдлера с пересчётом. Сущность этого метода состоит в том, что для уравнения y’=f(x,y) сначала мы находим значение `y’1=f(x0,y0) Dx+y0 где x0, y0 -начальная точка, а Dx - шаг интегрирования, затем берём
и находим уточнённое значение y1=y’Dx+y0+O(Dx2)
Аналогичная процедура используется в случае системы уравнений.
Этот метод весьма прост для реализации даже с помощью программируемых микрокалькуляторов (вследствие простоты правых частей системы (4.1)-(4.3)).
Для расчёта движения метеорита в нижних слоях атмосферы система (4.1)-(4.4)не годится ,т.к. она не учитывает абляцию (изменение массы),поэтому перейдем к описанию более сложной модели ,пригодной для низких высот ,т.е. для второй зоны.
Систему уравнений так называемой физической теории метеоритов (Kn 10 ) тела, составленного из сферического затупления радиуса и примыкающего к нему цилиндра толщиной 2rm. Вдоль траектории указаны безразмерные давления `p=p/v2r1 за фронтом баллистической волны для случая rm=70 м, Qe=35°, когда передняя часть волны находиться на высоте 7 км над Землёй. Нестационарность процесса обтекания приближенно можно учитывать лишь меняя p1, r1 и скорость движения тела, которые определяются из тракторных расчётов (например типа представленных на рис. 2 ).
На рис 6,а схематически даны волны для четырёх последовательных моментов времени. В момент времени t отмечен приход волн к земной поверхности и их отражение как в окрестности конечной точки траектории, так и в её балистической части. Оказывается, что в плоскостях, перпендикулярных к движению тела (см. сечение S на рис.16,б ), течение газа аналогично таковому при взрыве шнурового заряда с удельной энергией E0. Это обстоятельство использовалось для приближения расчёта баллистических волн. Задавалось значение E0 в соответствии с (4.21) и затем по теории циллиндрического взрыва определялись параметры баллистических волн при их прохождении в атмосфере. Давления в лобо-вой точке тела за головной ударной волной могут быть вычислены по условиям на ударной волне и по законам сохранения для течения в окрестности критической точки. Оказывается, что давление в лобовой части тела. Параметры баллистических волн вдоль траектории можно расчитать с помощью ЭВМ для широкого набора значений E0(s) вдоль пути s по траектории. Процессы в конечной части траектории (момент t4 на рис. 6,б) моделировались расширением газового шара (раскалённые остатки тела плюс воздух) с давлением pm*. Полная энергия этого шара принималась равной E (объёмный сферический взрыв).
Угол наклона конечной части траектории Qz0, её высота z0, а также энергии E (s). E подбиралась так, чтобы система ударных волн у концевой части полёта метеорита производила на Земле вывал леса, аналогичный наблюдаемому. Просчёт на ЭВМ распространения ударных волн в атмосфере от Тунгусского тела был проведен для многих значений E0(s),E0*, z0. Оказалось, что если E0=const=1.4×1017эрг/см, E =1023эрг, z =6.5 км, vz0=40, то картина вывала леса аналогична наблюдаемой в районе падения. На рис.7 дано сравнение расчитанной формы вывала леса и наблюдаемой на местности. Приводимые здесь и далее данные наблюдений получены в работах томских исследователей метеорита (Н.В.Ва-сильев, В.Г.Фаст и др.). На рис. 7,а сплошные кривые - “векторные линии” поваленных деревьев (обработка наблюдений); на рис.7,б стрелки - направления течения воздуха (расчёт). Видно как качественное, так и количественное согласие. Из результатов расчётов можно сделать дополнительные выводы. Так как E0=const, то (vrm)~1/r1, или vrm~r0-1/2er/2H. Отсюда даётся оценка: r =350 м при скорости в конце траектории v=2 км/с. Эта величина совпадает с оценкой размера по показаниям очевидцев.
Из тракторных
расчётов следовало ,что ve
Скачали данный реферат: Сухарников, Махнёв, Нифонт, Bogdana, Сеченов, Florentin.
Последние просмотренные рефераты на тему: оформление доклада титульный лист, доклад на тему человек человек, реферат на тему творчество, сочинение изложение.
Предыдущая страница реферата | 1 2