Современные оптоволоконные кабели
Категория реферата: Промышленность, производство
Теги реферата: большой реферат, реферат слово
Добавил(а) на сайт: Domnina.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Чтобы передать телефонный разговор как последовательность импульсов, необходимо передать большое число (конкретно 64 000) двоичных знаков в секунду (64 000 бит/с или 64 кбит/с). Чтобы преобразовать непрерывно изменяющийся ток микрофона в двоичный сигнал, его необходимо, прежде всего, воспроизвести с помощью импульсов. Найденные значения амплитуды теперь будут изображаться двоичным числом, и посылаться как двоичные сигналы между двумя посылками импульсов. Со стороны приемника следует такое же обратное преобразование. Чтобы передать сигнал с более высоким качеством, необходимо различать, по меньшей мере, 256 амплитудных значений микрофонного тока. Поэтому требуется восьмикодовая система (8 двоичных знаков на кодовое слово) для каждого значения импульсной посылки. Для передачи одного движущегося телевизионного изображения требуется скорость передачи 80 млн. бит в секунду (80 Мбит/с).
В качестве пропускной способности линии - все равно из меди или стекла - принимается наибольшая скорость передачи сигнала через эту линию, измеренная в битах в секунду (бит - двоичная цифра).
Единица двоичной информации может быть приблизительно пересчитана в соответствующую ширину полосы частот, как обычно делается в аналоговой передающей технике для обозначения характеристики сигналов или кабелей. Так как для передачи информации со скоростью 2 бит/с теоретически требуется ширина полосы, по крайней мере, 1 Гц (практически около 1,6 Гц), можно приблизительно определить скорость передачи сигнала или пропускную способность в битах в секунду и соответствующую ей ширину полосы пропускания в герцах.
Возьмем для примера двоичный закодированный телефонный сигнал. Каждый единичный сигнал этой последовательности (единичный импульс тока или света) должен быть не длиннее, чем 1/64000 с, чтобы не мешать следующим сигналам. Пропускная способность линии принципиально тем выше, чем короче импульсы можно по ней передать.
Точно так же существуют границы и для световода. Принцип его действия ранее упоминался: свет распространяется зигзагообразно в светопроводящем сердечнике благодаря полному внутреннему отражению от стенок, к внешней стороне которых примыкает среда с малым коэффициентом преломления - оболочка. Это полное отражение связано с одним условием. Угол между световым лучом и оптической осью световода должен быть не более предельного угла полного внутреннего отражения. Он определяется отношением показателей преломления в сердечнике nc, и в оболочке no:
cos a = no/nc
Можно было бы отдать предпочтение волокну с большим различием показателей преломления, так как оно, очевидно, может воспринять и передать больше света от источника с большим углом излучения. Это преимущество было бы действительно решающим, если бы требования стояли только в возможно более высокой пропускной способности световода.
II. Пропускная способность волоконных световодов
В одномодовых (мономодовых) и многомодовых световодах разная (в одномодовых больше из-за их толщины стержня). Вызванный различной длиной пробега в световоде временной разброс элементов выходного сигнала и как следствие рассеяние части энергии на выходе световода называют модовой дисперсией. К сожалению, она является не единственной причиной ограничения пропускной способности. Необходимо еще добавить так называемую материальную дисперсию. Она состоит в том, что показатель преломления nc стержня световода зависит от длины волны. Длинноволновые красные лучи отклоняются меньше, чем коротковолновые синие. Этот эффект не имел бы значения для техники световой связи, если бы применяемые источники излучали свет только одной длины волны. К сожалению, этого не бывает. Хотя ширина спектра полупроводникового лазера относительно узка, он излучает свет в некотором интервале длин волн шириной несколько нанометров. Светоизлучающий диод в этом отношении значительно превосходит его - приблизительно на 30 - 40 нм. Ограничение этой полосы невозможно без потери энергии. Именно эти различные спектральные составляющие излучения проходят через световод с различной скоростью (v = c/nc), что, конечно, приводит к уширению импульса и ограничивает пропускную способность световода.
В волокне со ступенчатым профилем показателя преломления преобладает модовая дисперсия вследствие большой разницы времен пробега между осевым и граничными лучами. В градиентном световоде с оптимальным профилем показателя преломления обе дисперсии становятся приблизительно одинаковыми. Напротив, в мономодовом волокне модовая дисперсия не имеет значения и только материальная дисперсия определяет характеристику передачи.
И третий фактор, влияющий на качество передачи - волноводная дисперсия. Она возникает только в мономодовых световодах, а именно потому, что единственная способная к распространению мода имеет скорость распространения, зависящую от длины волны.
Анализ причин и влияния материальной дисперсии на характеристики передачи позволили сделать выводы, которые представляют исключительный интерес для практики и оказывают решающее влияние на дальнейшее развитие световодной техники. Прежде всего, выяснилось, что уширение импульса, вызванное материальной дисперсией, в значительной степени определяется микроструктурой зависимости показателя преломления данного светопроводящего материала от длины волны. Если на графике такой зависимости имеется участок, на котором кривая стремится к нулю, то на этой длине волны можно ожидать минимального уширения импульса и пренебречь влиянием материальной дисперсии.
Действительно, на кривых профиля показателя преломления можно найти такую точку. Это означает, что если среди узкополосных источников света имеются такие, для которых материальная дисперсия равна нулю, то соответственно пропускная способность принимает максимальное значение.
Исходя из значений материальной дисперсии можно рассчитать для различных длин волн уширение импульса и из этого затем скорость передачи для лазера (спектральная ширина около 2 нм) и для светоизлучающего диода (спектральная ширина около 40 нм). Даже для светоизлучающего диода в этой области длин волн можно ожидать скорости передачи свыше 1 Гбит/с на 1 км. Для лазеров экспериментально было получено значение 1,4 Гбит/с на 1 км! Понятно, что эта область длин волн нулевой дисперсии световода представляет большой интерес.
Только что названные характеристики передачи реальны и указывают на технические возможности, которые, имеются в простых многомодовых световодах и сегодня еще не исчерпаны. Нельзя забывать, однако, что столь высоких значений скорости передачи можно достигнуть только путем обеспечения оптимальных параметров светоизлучающего диода для определенной длины волны, которые для других длин волн создают худшие условия передачи. Кроме того, требуется соблюдение очень малых, допусков при изготовлении световода для обеспечения требуемого профиля показателя преломления, что несомненно удорожает световод.
Интересны и важны также изложенные выше соображения о том, что в любом случае не может быть создан световод с максимальной пропускной способностью. Для большинства областей пропускная способность применения световода достаточна. При этом оказывается возможным применить более простые электрические соединители и получить больший КПД при соединении и т. д.
III. Оптические кабели, их конструкции и свойства
3.1 Преимущества и недостатки оптических световодов
Одиночная двухпроводная цепь, одиночная коаксиальная пара являются в электрической технике связи редким явлением. Как правило, электрический кабель состоит из нескольких пар. Общая броня защищает их от окружающего влияния различного рода - повреждения грызунами, влажности и механических воздействий.
Световод, так же как и электрический проводник, помимо применения в качестве одиночного проводника света включается в состав оптического кабеля, и к нему предъявляются требования, аналогичные требованиям, предъявляемым к электрическим кабелям.
Однако электрические проводники и световоды настолько сильно различаются, что было бы удивительно, если бы электрические и оптические кабели не отличались между собой по конструкции, способам монтажа, прокладки и эксплуатации. Вместе с тем имеется многолетний опыт механической защиты тонких проводников (медные провода толщиной в десятые доли миллиметра используются достаточно широко), который может быть использован для защиты чувствительных стеклянных волокон.
Когда речь идет о различии между световодами и медными проводниками, необходимо назвать основное свойство, которое до сих пор вообще еще не называлось: абсолютная нечувствительность световода по отношению к помехам от электрического и магнитного полей. Здесь можно было бы сказать, что экранирование электрических кабелей для защиты их от внешних электромагнитных помех абсолютно излишне в оптических кабелях.
Основную роль играет, конечно, сам материал - стекло, которое выступает теперь в качестве заменителя ценного цветного металла - меди. Этот материал-заменитель обусловливает большой экономический выигрыш. Запасы меди в мире постоянно истощаются, а цены растут. По некоторым прогнозам еще на исходе столетия месторождения на суше, известные сегодня, будут исчерпаны. Основной материал для стеклянных оптических волокон - кварцевый песок - имеется в больших количествах. В технике связи несколько килограммов меди могут быть заменены 1 г стекла высокой очистки, если за основу принять одинаковую пропускную способность кабеля.
Из этого соотношения следует еще одно преимущество: оптические кабели легче электрических. Это особенно заметно в кабелях с высокой пропускной способностью - из-за малого диаметра световода. Ясно, что оба эти свойства являются, непосредственным преимуществом во многих областях применения.
Наконец, необходимо указать на фактор гальванической развязки передатчика и приемника. В оптической системе они электрически полностью изолированы друг от друга, и многие проблемы, связанные с заземлением и снятием потенциалов, которые до сих пор возникали при соединении электрических кабелей, теряют силу.
Наряду с этими полезными параметрами необходимо конечно, назвать другие, по которым оптические волокна уступают меди и которые должен учитывать конструктор кабелей.
Это, прежде всего чувствительность незащищенного волокна к водяному пару. Это критическое свойство было очень скоро обнаружено, но было также обнаружено и противодействие ему: непосредственное покрытие световода защитной пленкой толщиной несколько микронметров непосредственно в процессе вытягивания волокна.
Эта защитная оболочка, в основном состоящая из полимера, полностью защищает световод. Она повышает также механическую прочность световода и его упругость. Кроме того, обеспечивается постоянство параметров при неблагоприятных окружающих условиях; без защитной оболочки они снижаются уже через несколько часов или дней.
Рекомендуем скачать другие рефераты по теме: реферат речь, реферат эволюция.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата