Математическая логика в младших классах
Категория реферата: Рефераты по педагогике
Теги реферата: соціологія шпори, охрана труда реферат
Добавил(а) на сайт: Дураничев.
Предыдущая страница реферата | 5 6 7 8 9 10 11 12 13 14 15 | Следующая страница реферата
Затем в задаче меняются числовые данные: «На одной полке 6 книг, а на другой - 4». Вопрос тот же, запись данных и решение проводится по той же таблице.
С целью закрепления знаний приобретенных при первом знакомстве с буквенными выражениями, выполняются упражнения, связанные с вычислением значений данного выражения при заданных значениях букв. Полезны и упражнения на заполнение таблиц, где компоненты действий обозначен буквами.
И еще один элемент алгебры, который дети изучают во втором классе – это уравнения.
При введении уравнений они решаются подбором используя знания состава чисел, табличных случаев сложения, вычитания умножения и деления. После решения нескольких примеров подбором учитель дает уравнение х + 28 = 40, предлагает прочесть: первое слагаемое неизвестно, второе – 28, сумма - 40, надо найти первое слагаемое. Дети говорят правило нахождения неизвестного слагаемого: чтобы найти первое слагаемое, надо из суммы 40 вычесть известное слагаемое – 28.
Вычисляем: 40 –28 = 12, т. е. х = 12.
Проверяем: 12 + 28 = 40, значит уравнение решено правильно. Запись на доске и в тетрадях: х + 28 = 40 Проверка: х = 40 - 28 12 + 28 = 40 х = 12 40 = 40.
Затем аналогично изучаются уравнения видов:
Х – 5 = 27 – нахождение неизвестного уменьшаемого;
32 – х = 8 – нахождение неизвестного вычитаемого;
14 · х = 28 – нахождение неизвестного множителя; х : 6 = 12 – нахождение неизвестного делимого;
48 : х = 4 – нахождение неизвестного делителя.
Овладение понятием «уравнение» способствует и решение задач способом составления уравнения. Необходимым требованием для этого является умение составлять выражения по их условиям.
В третьем классе решаются задачи с помощью составления уравнения, в которых надо найти неизвестный компонент действия.
Для решения задачи с помощью уравнения обозначают буквой искомое число, выделяют в условии задачи связи, которые позволяют составить равенство, содержащее неизвестное, записывают его. Полученное уравнение решают, используя знания, связи между компонентами и результатом действия. Затем дается ответ на вопрос задачи.
Так же с помощью уравнений решаются задачи на нахождение одной из сторон прямоугольника по известным площади и длине смежной стороны.
Задачи на составление уравнений решаются систематически – это хорошее упражнение на отработку понятия уравнения.
Кроме решения уравнений учащиеся в третьем классе продолжают работу над выражениями с переменной, а так же с изучением порядка действий.
Таким образом учащиеся проверяют знания свойств арифметических действий
в таких упражнениях: при каких значениях букв верны следующие равенства:
36 · в = в; а · а = а; с + с = с; 10 · с = 10; 49 · а = 0; в · 0 = 0; 12
· а = а · 12; в + в = в.
В данном уравнении буквенная символика способствует повышению уровня обобщения знаний и готовит их к изучению алгебры.
И новым в вопросе о порядке действий в выражениях является изучение правила порядка действий в выражениях со скобками, причем в скобках несколько действий.
Таким образом можно сделать вывод о том, что изучение числовых выражений с переменной, числовых равенств и неравенств, уравнений продолжается на протяжении всех трех лет начального обучения в школе.
§ 2. Различные трактовки введения понятий.
Задания творческого характера на уроках математики.
Учебные задания, выполняемые на уроках математики, часто определяют однообразие мыслительной деятельности учащихся, реализуя лишь обучающие цели – закрепление знаний, формирование умений и навыков. Это отрицательно сказывается на развитие учащихся и на дальнейшем усвоении учебного материала. В частности, имеются ввиду учебные задания на нахождение значений числовых выражений, то есть решение примеров из учебников.
Урок математики очень оживляют учебные задания творческого характера.
Детям необходимо составить неравенство. На доске записана левая часть
неравенства 72 : 6 и знак сравнения «>». Подумайте, какое выражение надо
записать в правой части неравенства, чтобы значение левого выражения было в
четыре раза больше правого? 72 : 6 > 72 : (. Предлагается делитель 24.
Рекомендуем скачать другие рефераты по теме: классы реферат, бесплатные конспекты.
Предыдущая страница реферата | 5 6 7 8 9 10 11 12 13 14 15 | Следующая страница реферата