Педагогика в начальных классах
Категория реферата: Рефераты по педагогике
Теги реферата: сочинение 6 класс, реферат на тему життя
Добавил(а) на сайт: Яшков.
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата
Однако существует и другое мнение о том, что арифметический метод
решения задач развивает мышление не в меньшей степени, так как ученику
необходимо разбить составную задачу на простые и на основе логически
строгих рассуждении в определенной последовательности решить их.
Арифметический способ решения требует большего умственного напряжения, что
положительно сказывается на развитии умственных способностей, математической интуиции, на формировании умения предвидеть реальную
жизненную ситуацию. Именно поэтому арифметический метод решения задач
должен быть если не ведущим, то хотя бы полноправным методом решения задач
в начальных классах.
Следует отметить, что арифметический способ решения доступен не всем учащимся так как мышление младшего школьника ноет наглядно-образный характер. Конкретное мышление младших школьников проявляется е том, что они могут успешно решить ту или иную задачу в том случае, если опираются не действия с реальными предметами. Поэтому для осознанного выбора действия, посредством которого решается задача, необходимо иллюстрировать задачную ситуацию, чтобы учащиеся осознали, почему и зачем выполняется то или иное действие.
Работу по формированию умения решать задачи "на предположение" арифметическим способом целесообразно начинать с первых задач, включенных в учебник математики, так как они содержат небольшие данные и задачную ситуацию можно легко проиллюстрировать.
Особого внимания и творческого подхода требуют задачи, предлагаемые в конце учебника. Именно на данном этапе обучения должно проявляться умение применять различные приемы и методы решения задач, умение анализировать, рассуждать, предлагать и проверять эти предположения, делать соответствующие выводы. Поэтому при решении задач учителю необходимо организовать работу таким образом, чтобы учащиеся находили различные способы решения, сравнивали их и выбирали наиболее легкий и рациональный.
Однако значительная часть учителей, следуя указаниям, предложенным к данной задаче, проводит работу над задачей, которая недостаточно полно реализует как обучающие, так и развивающие функции.
Чтобы усилить развивающий аспект обучения, полезно решить задачу арифметическим способом. Осознать выбор действий, посредством которых решается задача, поможет правильно выбранная наглядная интерпретация задачи.
Метод перебора при решении задач оказывает положительное влияние на развитие мышления учащихся, так как выбор предполагаемого ответа, соотнесение этого данного с условием задачи помогает осмыслению связей и зависимостей между величинами, входящими в задачу, развивает умение предвидеть, вырабатывает интуицию и последовательность рассуждении.
При сравнении способов решения выясняется, что одни учащиеся отдали предпочтение арифметическому способу, другие – по способу подбора. Тем не менее систематическая работа по решению задач разными способами, сравнение решений и их обсуждение, выбор рационального дает возможность лучше осознать связи и зависимости между величинами, формирует умение рассуждать, делать выводы и обосновывать их.
Все сказанное дает основание предполагать, что затруднения
возникающие у учителя в процессе работы порождают мнение о том, что по
данной системе развивающего обучения могут работать лишь избранные учителя.
Однако это не так.
Учителю нужны методическая помощь, методические разработки и
рекомендации, которые позволили бы сэкономить время на подготовку к уроку, сохранить уверенность, силу и энергию, необходимую для плодотворной и
творческой работы.
1.4. Как составить и решить задачу по системе Д.Б. Эльконина – В.В.
Давыдова.
Начнем с очень простого, на первый взгляд, вопроса: "Что такое
задача?" Или "Как узнать задачу?" Дети обязательно скажут: "Это там, где
слова", ''Задача - это вопрос", "В ней обязательно что-то происходит".
Правда, у нас очень умные дети? Тогда предложите им выбрать из предложенных
записей задачу:
1. На склад привезли 3 т картофеля.
2. Сколько цветов в букете?
3. На празднике было 20 красных шаров, 10 зеленых и 15 синих. Сколько всей шаров было на празднике?
4. На сколько ящик массой 15 кг тяжелее ящика массой 8 кг?
5. В вазе 5 яблок и 7 груш. Найди общее количество фруктов.
С пунктами 1 и 2 не возникает проблемы, так как в первом нет вопроса, а во втором нет данных ("ничего неизвестно"). Текст под номером 3 позволяет
сформулировав основные элементы задачи - условие и вопрос. А дальше, не
давая детям опомниться вычеркнем тексты под номером 4 ("в нем нет условия")
и номера 5 ("нет вопроса") и попросите оценить ваши действия. При
внимательном рассмотрении окажется, что условие и вопрос задачи могут быть
сформулированы в одном вопросительном предложении, а бывает и так, то
вопрос "спрятан" в указание совершить какие-либо действия. Итак, казалось
бы, простой вопрос о задаче открывает целую серию исследовательских уроков.
Они будут продолжены по мере накопления возможных оснований для сравнения и
классификации задач. Завершить данный урок можно открытием "маленькой
тайны" (чем успокоим того ребенка, которого в задаче пока волнуют только
действующие лица): задача имеет сюжет. Это слово может стать вашим
"подарком" детям, а так как принято благодарить за презент, попросите ребят
придумать разные задачки на какую-либо тему (тему дети могут выбрать сами).
Чтобы избавиться от "текстового страха", поставим перед собой первую
задачу: научиться читать так, чтобы видеть за скорлупой слов математическое
ядро. В схеме решения задачи появляется первый шаг: "Читаю задачу". Для
учителя не является секретом, что текст читается дважды: цель первого
прочтения -общее знакомство с задачей, второго - структурирование текста с
помощью логических пауз, выделения голосом данных. Наш первый шаг относится
к первому чтению задачи. Как же зафиксировать на бумаге результат второго?
Если мы сумеем научить этому наших детей, то можно смело утверждать:
половина проблем в решении задач снята!
По моему убеждению, каждый ученик должен "понимать", то есть уметь обрабатывать текст задачи.
Итак, выделив математическое ядро, читаем ее второй раз и ставим
перед собой очень важную задачу: выделение величин и отношений между
ними, которые заключены, как говорят дети, "в главных словах и числах
(буквах)". Это второй шаг в решении любой задачи.
Можно с ребятами договориться подчеркивать эти слова карандашом в книге и цветным мелом на доске. Вопрос задачи всегда выделяем особо - это цель наших действий. Вот что получается:
Трусливый охотник перед охотой подкрепился двумя булочками, но струсил и так ослабел, что решил на охоту не идти. Подкрепившись еще тремя булочками, он осмелел, даже зарядил ружье, но снова струсил. Пришлось ему опять восстанавливать свои силы двумя булочками. Сколько всего булочек истратил охотник булочками на поддержку своих сил?
Текст уже не пугает; зрительно делается акцент на выделенные слова, а их стало во много раз меньше. Многие дети вздохнули с облегчением: "Задача- то - проще не бывает". Но "расслабиться" нам не дал ученик, которому математика дается труднее, чем остальным, и этот факт, как это ни парадоксально, помогает всем остальным более осознанно выполнять свои действия (как в поговорке "Не было бы счастья, да несчастье помогло"). Его вопрос: "Ребята, и все-таки, как узнать в тексте главные слова?" - слегка поубавил радость от кажущейся легкости. Этот ученик задал самый главный вопрос урока, заставив отрефлексировать способ действия. И не оказалось такого ученика, его роль должны взять на себя вы и попросить детей обсудить, по какому признаку они выделяют величины.
Первое, что предложили ученики, - это проверить, правильно ли в данной задаче они выделили слова. Ход был гениально простой: стереть с доски все слова, кроме выделенных. Получилось следующее:
...двумя булочками ... тремя булочками ... двумя булочками.
Рекомендуем скачать другие рефераты по теме: решебник 11, курсовая работа по менеджменту.
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата