Численный расчет диода Ганна
Категория реферата: Рефераты по радиоэлектронике
Теги реферата: тесты с ответами, предмет культурологии
Добавил(а) на сайт: Гарин.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Недостатком температурной модели является тот факт, что величины t12, t21 и te1 не являются такими четко измеряемыми характеристиками, как
пороговое поле эффекта Ганна, пороговая скорость, скорость насыщения.
Поэтому, для определения параметров модели необходимо определить их
соответствие измеряемым характеристикам, прежде всего – характеристики
скорость-поле. Для этого надо вычислить статическую характеристику скорость-
поле по температурной модели и подобрать параметры модели так, чтоб она
соответствовала измеряемой характеристике.
Для этого в уравнениях динамической модели необходимо приравнять нулю производные по времени и пространственной координате. Кроме того, требуется учесть еще несколько физических моментов.
Рассмотрим скорость перехода электронов из долины в долину. В стационарном режиме скорости этих переходов равновероятны. В нижней долине переход могут совершить только электроны с энергией, большей, чем ширина междолинного зазора. Вероятность иметь эту энергию: где А зависит от общего количества электронов в долине и плотности состояний в верхней долине. В верхней долине вероятность (скорость) перехода пропорциональна количеству электронов в верхней долине и плотности состояний в нижней. В итоге должно выполняться равенство:
При этом R=P2/P1 – отношение плотности состояний в верхней долине к
плотности состояний в нижней долине определяется соотношением эффективных
масс и количеством долин. Для арсенида галлия R составляет около 60.
Соответственно:
Из принципа детального равновесия, т.е. условия равенства скоростей перехода, должно выполняться:
Что и дает соотношение между временами миждолинного перехода.
Рассмотрение баланса импульса следует проводить в предположении, что после перехода из долины в долину средний импульс перешедших электронов равен нулю, и они должны будут набирать характерный импульс miVi.
Тогда в нижней долине баланс импульса запишется в виде:
В данной формуле tm1 – среднее время релаксации по импульсу в нижней долине. Отсюда для соотношения между скоростью и полем, т.е. подвижностью в нижней долине можно получить такое соотношение:
Таким образом получается, что подвижность зависит от интенсивности междолинных переходов. Аналогично для верхней долины можно записать
В итоге для статической характеристики в рамках двухтемпературной модели получаем систему трансцендентных уравнений
Решая эту систему, можно получить зависимость:
Сравнивая данную зависимость, полученную теоретически, с экспериментальной зависимостью скорость-поле, можно подобрать значения постоянных времени. Расчеты показывают, что оптимальными являются параметры: t21=2,0?10-12 сек, te1=0,8?10-12 сек, tm1=0,4?10-12 cек.
Динамическая двухтемпературная модель
Основные уравнения двухтемпературной модели имеют вид:
Уравнение Пуассона
Уравнения сохранения заряда для нижней и верхней долин
Уравнение сохранения энергии для нижней долины
Кроме того, необходимы граничные условия, имеющие вид
Два последних граничных условия являются неточными и для снижения погрешности от этой неточности необходимо в приконтактной области задавать область повышенного легирования.
Начальные условия точно заданы быть не могут. Однако, если метод решения уравнения выбран правильно, то независимо от начальных условий через некоторое время счета задача сойдется к правильному решению. Типичным видом записи начальных условий является запист в виде:
Е=VD/L, n1=n0, n2=0, T1=T0.
Уравнения, описывающие процессы в кристалле, должны быть дополнены уравнениями внешней схемы. Наиболее простыми и распространенными вариантами задания внешней схемы являются такие подходы:
1. Решение самосогласованной задачи с внешней схемой в виде колебательного контура;
2. Метод заданного напряжения.
Рекомендуем скачать другие рефераты по теме: 5 баллов, диплом 2011, сообщение об открытии.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата