Разработка и исследование имитационной модели разветвленной СМО (системы массового обслуживания) в среде VB5
Категория реферата: Рефераты по радиоэлектронике
Теги реферата: реферат по обществознанию, изложение по русскому языку 8
Добавил(а) на сайт: Sharlotta.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
2.2 Классификация систем массового обслуживания
При исследовании операций часто приходится сталкиваться с работой систем массового обслуживания. СМО могут быть одноканальными и многоканальными.
Процесс работы СМО представляет собой случайный процесс с дискретными состояниями и непрерывным временем; состояние СМО меняется скачком в моменты появления каких-то событий (прихода новой заявки, окончания обслуживания, момента, когда заявка, которой «надоело ждать», покидает очередь).
Предмет теории массового обслуживания — построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, правила работы, характер потока заявок) с интересующими нас характеристиками — показателями эффективности СМО, описывающими, с той или другой точки зрения, ее способность справляться с потоком заявок. В качестве таких показателей (в зависимости от обстановки и целей исследования) могут применяться разные величины, например: среднее число заявок, обслуживаемых СМО в единицу времени; среднее число занятых каналов; среднее число заявок в очереди и среднее время ожидания обслуживания; вероятность того, что число заявок в очереди превысит какое-то значение, простои, и т. д.
Математический анализ работы СМО очень упрощается, если процесс этой работы — марковский. Для этого достаточно, чтобы все потоки событий, переводящие систему из состояния в состояние (потоки заявок, «потоки обслуживания»), были простейшими. Если это свойство нарушается, то математическое описание процесса становится гораздо сложнее и довести его до явных, аналитических формул удается лишь в редких случаях. Однако аппарат простейшей, марковской теории массового обслуживания может пригодиться для приближенного описания работы СМО даже в тех ситуациях, когда потоки событий — не простейшие. Во многих случаях для принятия разумного решения по организации работы СМО вовсе и не требуется точного знания всех ее характеристик — зачастую достаточно и приближенного, ориентировочного.
Системы массового обслуживания делятся на типы (или классы) по ряду
признаков. Первое деление: СМО с отказами и СМО с очередью. В СМО с
отказами заявка, поступившая в момент, когда все каналы заняты, получает
отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует.
Примеры СМО с отказами встречаются в телефонии: заявка на разговор, пришедшая в момент, когда все каналы связи заняты, получает отказ и
покидает СМО необслуженной. В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает
возможности быть обслуженной. На практике чаще встречаются (и имеют большее
значение) СМО с очередью; недаром теория массового обслуживания имеет
второе название: «теория очередей».
СМО с очередью подразделяются на разные виды, в зависимости от того, как организована очередь — ограничена она или не ограничена. Ограничения могут касаться как длины очереди, так и времени ожидания (так называемые
«СМО с нетерпеливыми заявками»). При анализе СМО должна учитываться также и
«дисциплина обслуживания» — заявки могут обслуживаться либо в порядке поступления (раньше пришла, раньше обслуживается), либо в случайном порядке. Нередко встречается так называемое обслуживание с приоритетом — некоторые заявки обслуживаются вне очереди. Приоритет может быть как абсолютным — когда заявка с более высоким приоритетом «вытесняет» из-под обслуживания заявку с низшим, так и относительным — когда начатое обслуживание доводится до конца, а заявка с более высоким приоритетом имеет лишь право на лучшее место в очереди.
Существуют СМО с так называемым многофазовым обслуживанием, состоящим из нескольких последовательных этапов или «фаз» (например, покупатель, пришедший в магазин, должен сначала выбрать товар, затем оплатить его в кассе, после чего получить на контроле).
Кроме этих признаков, СМО делятся на два класса: «открытые» и
«замкнутые». В открытой СМО характеристики потока заявок не зависят от
того, в каком состоянии находится сама СМО (сколько каналов занято). В
замкнутой СМО — зависят. Например, если один рабочий обслуживает группу
станков, время от времени требующих наладки, то интенсивность потока
«требований» со стороны станков зависит от того, сколько их уже неисправно
и ждет наладки. Это — пример замкнутой СМО.
Рассмотрим вывод упомянутой ранее формулы Литтла, связывающей (для предельного, стационарного режима) среднее число заявок Lсист, находящихся в системе массового обслуживания (т. е. обслуживаемых или стоящих в очереди), и среднее время пребывания заявки в системе Wсист.
Рассмотрим любую СМО (одноканальную, многоканальную, марковскую, немарковскую, с неограниченной или с ограниченной очередью) и связанные с нею два потока событий: поток заявок, прибывающих в СМО, и поток заявок, покидающих СМО. Если в системе установился предельный, стационарный режим, то среднее число заявок, прибывающих в СМО за единицу времени, равно среднему числу заявок, покидающих ее, так как оба потока имеют одну в ту же интенсивность (.
Обозначим: X(t)—число заявок, прибывших в СМО до момента t, Y(t) —
число заявок, покинувших СМО до момента t. И та, и другая функции являются
случайными и меняются скачком (увеличиваются на единицу) в моменты приходов
заявок (X(t)) и уходов заявок (Y(t)). Для любого момента t их разность Z(t)
= X(t) - Y(t) — это число заявок, находящихся в СМО.
Рассмотрим очень большой промежуток времени T и вычислим для него среднее число заявок, находящихся в СМО. Оно будет равно интегралу от функции Z(t) на этом промежутке, деленному на длину интервала T:
[pic] (7)
Данный интеграл представляет собой площадь фигуры, заключенной между
X(t) и Y(t). Фигура состоит из прямоугольников, каждый из которых имеет
высоту, равную единице, и основание, равное времени пребывания в системе
соответствующей заявки (первой, второй и т. д.). Обозначим эти времена как
t1, t2,... Правда, под конец промежутка Т некоторые прямоугольники войдут в
эту фигуру не полностью, а частично, но при достаточно большом Т этим можно
пренебречь. Таким образом, можно считать, что
[pic], (8)
где сумма распространяется на все заявки, пришедшие за время Т.
Разделим правую и левую часть (8) на длину интервала Т. Получим, с учетом (7):
[pic] (9)
Разделим и умножим правую часть (9) на интенсивность (:
[pic] (10)
Величина T( — это среднее число заявок, пришедших за время Т. Если мы разделим сумму всех времен ti на среднее число заявок, то получим среднее время пребывания заявки в системе Wсист- Итак,
[pic] (11)
Это и есть формула Литтла: для любой СМО, при любом характере потока заявок, при любом распределении времени обслуживания, при любой дисциплине обслуживания среднее время пребывания заявки в системе равно среднему числу заявок в системе, деленному на интенсивность потока заявок.
Точно таким же образом выводится вторая формула Литтла, связывающая среднее время пребывания заявки в очереди Wоч и среднее число заявок в очереди Lоч.
Рекомендуем скачать другие рефераты по теме: реферат синдром, quality assurance design patterns системный анализ, реферат театр.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата