Спектральный анализ и его приложения к обработке сигналов в реальном времени
Категория реферата: Рефераты по радиоэлектронике
Теги реферата: реферат услуги, налоги в россии
Добавил(а) на сайт: Стрекалов.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Пусть дан произвольный непрерывный сигнал [pic] и его преобразование
[pic], которые в общем случае могут быть неограниченными по спектру и по
длительности. Если положить, что N отсчетов [pic] во времени взяты с
равномерным интервалом T секунд, то ограничим спектр этого сигнала
частотами [pic] герц взвешиванием в частотной области: [pic], здесь [pic]-
функция окна в частотной области. При этом сигнал трансформируется
следующим образом [pic]. Далее берутся отсчеты во временной области
сформированного первой операцией и ограниченного по спектру сигнала [pic], соответствующие изменения в спектре можно представить как [pic]. Теперь
ограничимся длительностью сигнала NT :[pic]. И снова свертка в частотной
области для спектра полученного на этапе 2 [pic]. Последнее что осталось
сделать - взятие отсчетов по частоте с интервалом 1/NT герц, это приводит к
периодическому продолжению исходных N временных отсчетов. Сигнал на
последнем этапе принимает следующий вид : [pic], а его преобразование :
[pic].
Окончательно можно получить, что если исходный сигнал [pic] и [pic]- его преобразование, то на четвертом шаге [pic] и [pic] связаны следующими соотношениями :
[pic]
[pic], где [pic]
[pic]Последние соотношения называют дискретно-временными рядами Фурье.
Исходя из процесса построения дискретно-временных рядов Фурье, можно
установить требуемое точное соотношение между рядом Фурье временной
последовательности и соответствующей непрерывно-временной функцией или
между рядом Фурье преобразования и исходной функции преобразования. Если
ширина спектра [pic] ограничена частотой 1/T герц, то ряд Фурье временной
последовательности будет сохранять исходные значения [pic] в отсчетных
точках, однако ряд Фурье последовательности преобразований будет состоять
из отсчетов некоторого «размытого» варианта исходного преобразования [pic].
С другой стороны, если длительность [pic] фактически ограничена интервалом
NT секунд, то ряд Фурье последовательности преобразований сохраняет
исходные значения [pic] в отсчетных точках, однако ряд Фурье временной
последовательности будет состоять из некоторого «размытого» варианта
исходного сигнала [pic]. Эффекты размытия можно ослабить за счет уменьшения
T (так что 1/T будет соответствовать более широкой полосе) или увеличения
N (так что NT будет соответствовать большей длительности), в результате
чего дискретно-временной рад Фурье будет точнее аппроксимировать
непрерывное преобразование. Ряд будет идентичным непрерывному
преобразованию только в случае периодических сигналов, которые можно
представить в виде суммы из комплексных синусоид с частотами k/NT герц, где k=0,1,...N-1.
1.2.3. Анализ эргодичных дискретных процессов.
Определение: Дискретный случайный процесс [pic] эргодичен в среднем если
[pic]
Определение: Дискретный случайный процесс [pic] автокорреляционно эргодичен если
[pic]
Допущение об эргодичности позволяет не только ввести через усреднение
по времени определения для среднего значения и автокорреляции, но позволяет
дать подобное определение спектральной плотности мощности :
Определение:
[pic]
Эта эквивалентная форма спектральной плотности мощности получается посредством статистического усреднения модуля дискретно-временного преобразования Фурье взвешенной совокупности данных, для случая когда число отсчетов данных увеличивается до бесконечности. Статистическое усреднение необходимо здесь потому, что дискретно-временное преобразование само является случайной величиной, изменяющейся для каждой используемой реализации [pic]. Это определение эквивалентно определению спектральной плотности мощности как дискретно-временное преобразование Фурье автокорреляционной последовательности.
Если в последнем определении не учитывать операцию математического ожидания, то получим оценку спектральной плотности мощности, которая называется выборочным спектром :
[pic]
Хотя выборочный спектр не является состоятельной оценкой истинной спектральной плотности мощности, эта оценка может быть использована если выполнять некоторого рода усреднение или сглаживания. На использовании этой оценки основан классический периодограммый метод определения спектральной плотности мощности.
1.3. Классические методы спектрального анализа.
1.3.1 Введение
Оценки СПМ, основанные на прямом преобразовании данных и последующем усреднении, получили название периодограмм. Оценки СПМ, для получения которых по исходным данным сначала формируется корреляционные оценки, получили название коррелограммных методов спектрального оценивания.
При использовании любого метода оценивания СПМ пользователю приходится
принимать множество компромиссных решений, с тем, чтобы по конечному
количеству отсчетов данных получать статистически устойчивые спектральные
оценки с максимально возможным разрешением. К этим компромиссным решениям
относятся, в частности, выбор таких функций окна для взвешивания данных и
корреляционных функций и таких параметров усреднения во временной и в
частотной областях, которые позволяют сбалансировать требования к снижению
уровня боковых лепестков, выполнению эффективного усреднения по ансамблю и
к обеспечению приемлемого спектрального разрешения. Устойчивые результаты
(малые спектральные флюктуации) и хорошая точность (малое смещение
относительно истинных спектральных значений на всех частотах) достижимы
только тогда, когда произведение TB, где Т - полный интервал записи
данных, а B - эффективное разрешение по частоте, значительно превышает
единицу. Все эти компромиссы можно количественно охарактеризовать в случае
гауссовских процессов, для которых подробно теоретически изучены
статистические характеристики классических спектральных оценок. Однако
выбор конкретного метода спектрального оценивания в случае негауссовских
процессов зачастую обосновывается только экспериментальными данными. Да и
выбор функции окна очень часто основывается на данных экспериментальных, а
не теоретических исследований.
1.3.2. Окна данных и корреляционные окна в спектральном анализе.
Окна представляют собой весовые функции, используемые для уменьшения размывания спектральных компонент, обусловленного конечностью интервалов наблюдения. Так, можно считать, что воздействие окна на массив данных (как мультипликативной весовой функции) состоит в уменьшении порядка разрыва на границе периодического продолжения. Этого добиваются, согласуя на границе возможно большее число производных взвешенных данных. Проще всего обеспечить такое согласование, сделав эти производные равными или, по крайней мере, близкими к нулю. Таким образом, вблизи границ интервала взвешенные данные плавно стремятся к нулю, так, что периодическое продолжение сигнала оказывается непрерывным вплоть до производных высших порядков.
С другой стороны, можно считать, что окно мультипликативно воздействует на базисное множество так, чтобы сигнал произвольной частоты имел значительные проекции только на те базисные векторы, частоты которых близки к частоте сигнала. Оба подхода ведут, конечно, к одинаковым результатам.
1.3.3. Периодограммные оценки Спектральной Плотности Мощности.
Пренебрегая операцией вычисления математического ожидания и полагая, что конечное множество данных содержит N отсчетов, получаем выборочный спектр
[pic] который может быть вычислен по конечной последовательности данных.
Однако поскольку была опущена операция математического ожидания, эта оценка
будет неустойчивой или несостоятельной. И для сглаживания применяется что-
то вроде псевдоусреднения по ансамблю. Существует три различных типа
сглаживания быстрых флюктуаций спектра.
Рекомендуем скачать другие рефераты по теме: шпаргалки по математике, банк рефератов бесплатно, шпаргалки по гражданскому.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата