Тиристорные устройства для питания автоматических телефонных станций
Категория реферата: Рефераты по радиоэлектронике
Теги реферата: сочинение сказка, права человека реферат
Добавил(а) на сайт: Prjahin.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
1.7. Выпрямители и фильтры.
Электрический выпрямитель широко применяют как наиболее универсальный преобразователь переменного тока в постоянный.
Выпрямление в электрическом выпрямителе достигается вследствие включения
в его состав электрического вентиля, который пропускает ток преимущественно
в одном направлении, (рис. 1.2, а).
При рассмотрении процессов выпрямления характеристику вентиля
идеализируют, представляя ее (рис. 1.2, б) линейной ломаной кривой 1
(идеальный вентиль), 2 (идеализированный вентиль с потерями) или 3
(идеализированный вентиль с потерями и порогом выпрямления).
В качестве вентилей в настоящее время применяют в основном
полупроводниковые диоды. Порог выпрямления кремниевых диодов лежит в
пределах 0,4-0,8 В, а германиевых 0,15-0,2 В. Для низковольтных
выпрямителей (выпрямленное напряжение менее 10 В) порог выпрямления
кремниевых вентилей составляет заметную часть выходного напряжения; его
следует учитывать при расчетах, выбирая в качестве расчетной модель вентиля
с порогом выпрямления. Для выпрямителей с выходным напряжением более 10 В
можно проводить расчет и на основе модели вентиля без порога выпрямления.
Угол наклона спрямленной характеристики вентиля с потерями определяет
внутреннее сопротивление вентиля rв.
Значения сопротивлений rв, применяемых в настоящее время вентилей, составляют от десятков (слаботочные диоды) до долей Ом (сильноточные
диоды).
Прямой ток вентиля ограничен его разогревом из-за потерь электрической
мощности, пропорциональных падению напряжения на вентиле. При обратном
напряжении вентиль пропускает хотя и малый, но отличный от нуля обратный
ток. Этим током, как правило, пренебрегают.
Следует отметить, что малый обратный ток соответствует обратному
напряжению, не превосходящему некоторого значения. За этим пределом
обратный ток резко возрастает и вентиль пробивается. Это обстоятельство
ограничивает значение обратного напряжения, которое может быть приложено к
вентилю.
Схема простейшего электрического выпрямителя (рис. 1.3) содержит
трансформатор, вентили и нагрузку.
Трансформатор необходим для преобразования напряжения сети в напряжение, удобное для дальнейшего выпрямления и гальванической развязки нагрузки
выпрямителя от сети.
В общем случае трансформатор имеет m1 обмоток (фаз) в первичной цепи и m фаз во вторичной цепи.
В приведенной схеме как первичные, так и вторичные обмотки соединены
звездой. В подавляющем большинстве схем вторичные обмотки именно так и
соединяют. Что же касается первичных обмоток, то они могут соединяться и в
многоугольник.
[pic]
Рис. 1.2. Вольт-амперная характеристика вентиля.
Рис. 1.3. Вентиль.
К концу каждой из вторичных обмоток подсоединен анод вентиля. Катоды всех
вентилей подсоединены к сборной шине, которая и является одним (в данном
случае положительным) выводом выпрямителя. Второй вывод выпрямителя
(отрицательный) берут от средней точки звезды вторичных обмоток
трансформатора. К этим выводам и подключают нагрузку выпрямителя.
Из-за нелинейности характеристик вентилей ток в каждой из вторичных
обмоток может проходить только в одну сторону. Через нагрузку проходит
суммарный ток всех фаз (вентилей) вторичной обмотки, имеющий значительную
постоянную составляющую (выпрямленный ток).
Если изменить полярность включения всех вентилей на обратную, т. е.
подсоединить их катодами к концам вторичных обмоток, а анодами к сборной
шине, то выпрямленное напряжение изменит свою полярность.
Для уменьшения переменных составляющих в выходном напряжении между
нагрузкой и выпрямителем включают фильтр, называемый сглаживающим.
Необходимость в фильтре вызвана тем, что мгновенная мощность переменного
тока пульсирует во времени, а мгновенная мощность постоянного тока
неизменна. Следовательно, для получения на выходе постоянного тока в
выпрямителе должен быть элемент, запасающий избыток (по отношению к
среднему значению) мощности в те моменты, когда мощность переменного тока
близка к максимуму, и отдающий этот запас в нагрузку в моменты, соответствующие минимуму мгновенной мощности переменного тока.
Накопление (запасание) мощности можно осуществить лишь в реактивных
элементах (катушках индуктивности или конденсаторах), поэтому фильтр должен
содержать в своем составе хотя бы один такой элемент.
[pic]
Рис. 1.4 Схемы выпрямителей, содержащих один накопительный элемент.
Из двух схем выпрямителей, содержащих один накопительный элемент (рис.
1.4, а, б), практическое применение находит лишь схема с конденсатором.
У схемы с дросселем нельзя получить малое выходное сопротивление для
переменных составляющих тока нагрузки. Связано это с тем, что индуктивность
дросселя L, по которому проходит весь ток нагрузки, для хорошего
сглаживания пульсаций должна быть значительной. А при большой индуктивности
дросселя на нем возникают большие падения напряжения при изменениях тока
нагрузки.
С целью получения малого выходного сопротивления фильтра для переменных
составляющих тока нагрузки его схему усложняют, включая второй реактивный
элемент-конденсатор C (рис. 1.4, в).
Аналогичный фильтр для дополнительного сглаживания пульсаций (дроссель L
и конденсатор С) можно подключать и к выпрямителю с емкостным накопителем
(рис. 1.4, б).
Его схема для последнего случая показана на рис. 1.4, г.
Чем больше число фаз выпрямленного переменного напряжения, тем чаще и с
меньшей амплитудой пульсирует мгновенная мощность переменного тока. Поэтому
в многофазном выпрямителе снижается как запасаемая в реактивностях фильтра
мощность, так и время, на которое она запасается, что. приводит к
уменьшению габаритов и массы накопительных элементов.
При увеличении частоты переменного напряжения сокращается время, на
которое запасается энергия в фильтре, что позволяет опять-таки уменьшить
размеры и массу фильтра.
При большом числе фаз выпрямляемого напряжения можно добиться достаточно
качественного выпрямления и без фильтра.
Включение того или иного фильтра на выход выпрямителя существенно
сказывается на процессах, происходящих в самой выпрямительной схеме
(вентилях и трансформаторе). Это объясняется тем, что цепи постоянного и
переменного токов в электрическом выпрямителе связаны через вентили.
Поэтому включение реактивного элемента в цепь постоянного тока выпрямителя
сказывается на значении и форме тока в обмотках трансформатора, т. е. в
цепи переменного тока.
Характер процессов в выпрямителе задается тем реактивным элементом, который создает основное сопротивление переменной составляющей
выпрямленного тока. Прочие реактивные элементы фильтра не меняют картины
процесса, а сказываются лишь на некоторых его количественных
характеристиках.
Именно поэтому практически одинаковы форма и значения токов в обмотках
трансформатора у схем, приведенных на рис. 1.4, б, г, так как на
конденсаторе С в последней схеме получается уже практически выпрямленное
напряжение (его емкость большая) и дроссель L создает лишь несколько
большее постоянство тока разряда конденсатора С1. Поэтому конденсатор С1
относят к выпрямителю, а дроссель L, и конденсатор C2 рассматривают как
отдельные фильтрующие звенья.
Все схемы выпрямителей можно разбить на две группы, отличающиеся друг от
друга характером реактивности первого элемента фильтра и, следовательно, формой токов в обмотках трансформатора. Эти группы следующие:
а) выпрямитель, нагрузка которого начинается с индуктивного элемента (рис.
1.4, в);
Выпрямленное напряжение E0 - напряжение на выходных зажимах выпрямителя -
содержит не только постоянную составляющую E0, но и ряд гармоник
выпрямляемого переменного напряжения (рис. 1.5), т. е. пульсирует.
Коэффициентом пульсаций называют отношение пикового напряжения переменной
составляющей выпрямленного напряжения Em к его постоянной составляющей E0: kп=Em/E0=(e0max-e0min)/(2E0) (1.1.)
Представив выпрямленное напряжение рядом Фурье, т. е. как сумму
постоянной составляющей и ряда гармоник с амплитудами Еmk, можно оценить
качество выпрямления по коэффициентам пульсаций для каждой из гармоник:
kпr=Emk/E0 (1.2.)
Такая оценка удобна в том случае, когда в результате последующей
фильтрации выпрямленного напряжения большая часть гармоник сильно
ослабляется и на нагрузке оказываются отличными от нуля лишь напряжения
одной или двух гармоник.
К преимуществам электрического выпрямителя относятся: универсальность
принципа преобразования, заключающегося в том, что он пригоден для
получения как высоких, так и малых напряжений и токов; значительный КПД
преобразования; относительно небольшие габариты и масса; возможность
выпрямления переменных токов повышенной частоты; отсутствие подвижных
частей и, следовательно, быстроизнашивающихся и вибрирующих деталей, а
также переключаемых контактов и связанных с переключением искрения и
истирания контактов; малый уровень радиопомех; значительный срок службы и
высокая надежность; отсутствие при работе шума, выделения газов и дыма; не
критичность к условиям эксплуатации; относительно низкая стоимость.
Вместе с тем электрическому выпрямителю свойственны и недостатки:
чувствительность к изменению значения и формы выпрямляемого напряжения;
необходимость фильтрации выходного напряжения; относительная сложность
защитных устройств.
Рассмотрение процессов в выпрямительных схемах, проводимое далее, имеет
своей целью не всестороннее описание этих процессов, а только получение
расчетных соотношений. Поэтому сначала нужно определить цель электрического
расчета, а затем, следуя этой цели, строить расчетные формулы.
Выпрямитель в основном собирают из готовых изделий. Только трансформатор
и дроссель фильтра не являются покупными узлами, входящими в выпрямитель, но и их выполняют на типовых сердечниках с использованием нормализованных
обмоточных проводов.
[pic]
Рис.1.5. Гармоники выпрямленного напряжения.
При проектировании выпрямителя сначала выбирают готовые изделия (вентили, конденсаторы), а затем проверяют их режимы работы. Если электрический режим
выбранных изделий удовлетворяет паспортным данным и запасы по предельным
показателям приемлемы, то считают, что первый этап завершен успешно. После
этого определяют исходные данные для расчета трансформаторов и дросселей и, проведя их расчет, уточняют показатели режима, полученные на первом этапе.
В заключение рассчитывают показатели выпрямительного устройства.
Если же по каким-либо причинам электрические режимы, оцененные на первом
этапе, оказываются неприемлемыми (перегрузка, большие запасы по предельным
показателям), то подбирают другие изделия с более подходящими параметрами и
снова проводят расчет выпрямителя.
Таким образом, расчетные формулы используются дважды: на первом этапе
проектирования - выборе готовых изделий - как ориентировочные, а на втором
этапе - расчете показателей - как поверочные. Ни в том, ни в другом случае
не требуется высокой точности расчета. Сначала формулы используются для
прикидки, а затем для оценки запасов по режимам. Поэтому в дальнейшем
выводить будем только те формулы, которые определяют поверяемые показатели
режимов. Они должны быть упрощенными, с точностью не ниже 10 %, что
удовлетворяет целям поверки.
Режим электрических вентилей характеризуют средним прямым выпрямленным
током, максимальными значениями прямого тока и обратного напряжения. Помимо
этих величин для последующего теплового расчета необходимо определить и
мощность, выделяющуюся в виде теплоты в вентиле, которая пропорциональна
действующему значению тока, проходящему через вентиль.
Режим работы электрических конденсаторов характеризуют максимальным
рабочим постоянным напряжением, которое должно быть (с определенным
запасом) ниже пробивного, и значением переменной составляющей напряжения, которая должна быть меньше допустимой для данного типа конденсатора.
Для расчета трансформатора и дросселя необходимо знать напряжения на их
обмотках, действующие значения токов в обмотках и постоянный ток
подмагничивания.
1.8. Преобразователи постоянного тока.
Если в качестве первичных источников питания применяются аккумуляторы, гальванические элементы, термогенераторы, атомные и солнечные батареи, т.
е. источники, чаще всего используемые для питания нестационарной
аппаратуры, то возникает необходимость преобразования постоянного
напряжения одного номинала в постоянное или переменное напряжение другого
номинала. Эти напряжения можно получить от нескольких источников
постоянного напряжения или от одного источника через гасящие резисторы и
резисторы-делители. Неприемлемость этих способов очевидна из-за малого КПД, больших габаритов и массы. Эти причины и вызвали появление различных
преобразователей постоянного тока электромашинных (умформеров), вибрационных и полупроводниковых.
В настоящее время полупроводниковые преобразователи практически вытеснили
электромашинные и вибрационные из-за своих малых габаритов и массы, большого срока службы, высокого КПД (до 85-90%), высокой надежности, большой механической прочности и ряда других преимуществ.
К недостаткам полупроводниковых преобразователей следует отнести подверженность влиянию температуры окружающей среды.
1.9. Электрохимические источники тока
Гальванические элементы являются первичными химическими источниками, в
которых химическая энергия непосредственно преобразуется в электрическую.
Их работа основана на использовании свойства положительных ионов металлов
переходить в растворы кислот и щелочей, называемых электролитами.
Наиболее распространен электролит в пастообразном состоянии. При
погружении в него металла в результате химического взаимодействия атомы
металла переходят в электролит, теряя часть своих электронов. Поэтому на
металлическом электроде возникает избыток электронов и относительно
электролита создается разность потенциалов, которая зависит от химической
активности металла. Таким образом, если в электролит поместить две
металлические пластины с различной химической активностью, то между ними
будет создаваться ЭДС, определяемая разностью потенциалов положительного
электрода и электролита. Металл, менее активный химически, будет иметь
более высокий потенциал относительно металла более активного. Например, если в электролит поместить медную и цинковую пластины, то положительным
электродом будет медная пластина, а отрицательным-цинковая. Величина ЭДС
зависит от материала электродов и концентрации электролита и не зависит от
размеров и конструкции электродов.
Применение находят следующие гальванические элементы: 1) марганцево-
цинковые (МЦ), малогабаритные, герметизированные; 2) воздушно-марганцево-
цинковые (ВМЦ); 3) окисно-ртутные, отличающиеся постоянством выходного
напряжения во времени; 4) медно-окисные с большим сроком службы (до двух
десятков лет); 5) ртутно-цинковые (РЦ) малых габаритов; 6) серебряно-
окисные и серебряно-цинковые.
Наибольшее применение для питания аппаратуры связи находят сухие элементы
типа МЦ и ВМЦ. Недостатком элементов типа ВМЦ являются узкий температурный
интервал их работы и большая чувствительность к перегрузкам, хотя они по
сравнению с элементами МЦ имеют меньшие габариты при одинаковой емкости.
1.10. Непосредственные преобразователи энергии.
1.10.1. Термоэлектрические генераторы.
Принцип работы таких генераторов основан на явлении термоэлектричества, сущность которого заключается в следующем. Если соединить (спаять) несколько проводников из разных металлов и поддерживать места их соединения при различных температурах T1 и T2, то на свободных концах появится термоэлектродвижущая сила, величина которой составит Е = ((T1-T2), где (. - коэффициент, зависящий от материала контактируемых проводников.
Образование термо-ЭДС можно объяснить тем, что в местах контактов
проводников с разной температурой создается различная концентрация
электронов, что приводит к перемещению электронов из зоны с повышенной
концентрацией электронов (горячий спай) в зону с более низкой концентрацией
(холодный спай). Перемещение электронов из одной зоны в другую, в свою
очередь, приводит к появлению разности потенциалов. Одновременно с
перемещением электронов происходит теплообмен между горячим и холодным
проводниками. Из-за высокой теплопроводности металлов и низкого значения
коэффициента к термо-ЭДС, получаемая при металлических проводниках, очень
мала.
Применение полупроводниковых материалов с разной проводимостью (типа р и
п) позволяет резко увеличить термо-ЭДС. Так, если у чистых металлов
коэффициент термо-ЭДС а. не превышает 100 мкВ на 1° С, то у полупроводников
он достигает 1000 мкВ/1° С. Меньшая теплопроводность полупроводников
позволяет получить большую разность T1 - T2, что также увеличивает термо-
ЭДС и КПД генератора.
В настоящее время проводятся работы по созданию термогенераторов, использующих солнечную энергию, отработанные газы автомобилей, тракторов, котельных, атомных реакторов и т. д. Промышленностью выпускаются
термоэлектрогенераторы типа УГМ80М с выходной мощностью до 100 Вт, типа
УГМ200К и УГМ200Тмощностью до 200 Вт. Последовательно-параллельное
включение термогенераторов УГМ80 позволяет обеспечивать мощность
потребителя до 200 Вт, а включение УГМ200 - до 3 кВт. Указанные
термоэлектрогенераторы снабжены устройством токовой и тепловой защиты.
2. Устройство выпрямительное типа ВУТ70/600
Устройcтво выпрямительное тиристорное (в дальнейшем именуемое ВУТ) с автоматической стабилизацией выпрямленных напряжения и тока предназначается для питания аппаратуры связи одновременно с автоматическим зарядом и подзарядом кислотных аккумуляторных батарей, а также для питания аппаратуры связи без аккумуляторных батарей в статическом режиме работы.
Примечание. При статическом режиме работы не допускается, скачкообразное изменение нагрузки на ЭПУ более чем на 10% от установленного значения, включение и отключение параллельно работающих ВУТ, а также работа на импульсную нагрузку и нагрузку, имеющую отрицательное входное сопротивление.
Устройства разработаны следующих типов: ВУТ 31/60 и ВУТ 90/25 - с
условной мощностью 2 кВт, ВУТ 31/125 и ВУТ 67/60 - с условной мощностью 4
кВт, ВУТ 31/250, ВУТ 67/125, ВУТ 152/50 и ВУТ 280/25 - с условной мощностью
9 кВт, ВУТ 31/500 и ВУТ 67/250 - с условной мощностью 16 кВт, ВУТ 70/600 -
с условной мощностью 40 кВт.
ВУТ с номинальным напряжением 24В применяются для питания аппаратуры
линейно-аппаратных цехов (ЛАЦ) междугородных телефонных станций (МТС) и
обслуживаемых усилительных пунктов (ОУП) линий междугородной телефонно-
телеграфной связи, для питания аппаратуры телеграфов и районных узлов связи
(РУС). ВУТ с номинальным напряжением 60В применяются для питания аппаратуры
автоматических телефонных станций (АТС) городской телефонной сети, аппаратуры, междугородной автоматики, питания, аппаратуры телеграфов и РУС.
ВУТ 152/50 применяются для питания моторных цепей. ВУТ 280/25. применяются
для питания резервных цепей РРЛ станций.
Рекомендуем скачать другие рефераты по теме: переплет диплома, решебник по английскому языку, рефераты.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата