Рефераты | Рефераты по радиоэлектронике | Усилитель многоканальной системы передачи
Усилитель многоканальной системы передачи
Категория реферата: Рефераты по радиоэлектронике
Теги реферата: ответы по биологии, культура шпори
Добавил(а) на сайт: Лавр.
1
Содержание.
1.Введение
1.1Задание параметров
2. Эскизный расчет
2.1Структурная схема усилителя с одноканальной ОС
2.2Выбор транзисторов и расчет режима работы.
2.3Расчет необходимого значения глубины
2.4Определение числа каскадов усилителя и выбор транзисторов предварительных каскадов
2.5Проверка выполнения условий стабильности коэффициента усиления.
3.Выбор схемы цепи усиления и расчет по постоянному току
3.1Варианты схем включения каскадов
3.2Расчет каскадов усилителя по постоянному току
4.Расчет коэффициента усиления и параметров АЧХ
5.Расчет пассивных узлов структурной схемы усилителя
5.1Выбор и расчет входных и выходных цепей
5.2Расчет элементов обратной связи
6.Расчет и построение характеристик передачи по петле ОС
6.1Характеристик передачи по петле ОС
6.2 Факторы влияющие на максимально допустимую глубину ОС
6.3 Построение ЛАХ Т(f)
7.Составление принципиальной схемы
1.1 Введение.
Данное курсовое проектирование заключается в теоретической реализации многокаскадного усилителя по заданным параметрам. Проектирование следует начать с эскизного расчета усилителя.
1. Эскизный расчет усилителя (п.2).
Выбрать транзистор выходного каскада (п.2.2).
Рассчитать режим работы выходного каскада (п.2.2).
Рассчитать требуемую глубину ОС F (п.2.3).
Выбрать транзисторы предварительных каскадов и рассчитать коэффициент трансформации входного трансформатора n` (п.2.4).
Рассчитать число каскадов усилителя N (п.2.4).
Проверить выполнение условия стабильности коэффициента усиления и уточнить глубину ОС (п.2.5) .
2. Построение и расчет цепи усиления (К – цепи) по постоянному току (п.3).
Построить схему К – цепи усилителя (п.3.1, 3.2).
Выбрать режим работы транзисторов предварительных каскадов и нанести выбранные токи и напряжения в цифрах на схему К – цепи (п.3.2).
Рассчитать сопротивления резисторов схемы (п.3.2).
Выполнить расчет нестабильности режима работы схемы (п.3.3).
3. Расчет коэффициентов усиления и параметров АЧХ (п.4.).
Рассчитать коэффициенты усиления каскадов и общий коэффициент усиления. Уточнить число каскадов.
Рассчитать частоты полюсов передаточной функции К – цепи. Уточнить типы транзисторов предварительных каскадов.
4. Расчет пассивных узлов структурной схемы усилителя (п.5).
Выбрать и рассчитать входную и выходную цепи.
Рассчитать элементы цепи ОС.
5. Расчет и построение характеристик передачи по петле ОС (п.6).
Рассчитать высокочастотного обхода и асимптотические потери Ат (п.6.2).
Построить ЛАХ Т(f) оптимального среза и сделать вывод о достаточной глубине ОС при выбранных запасах устойчивости (п.6.3).
6. Составление принципиальной схемы усилителя, выводы по результатам проектирования (п.7).
Структурная схема усилителя без цепи ОС (цепь усиления) показана на рис 2.2
Цепь усиления должна коэффициент усиления, достаточный для получения заданного значения КF и необходимо значения глубины ОС F. Цепь усиления содержит 2 – 4 каскада и функционально разделяется на выходной каскад и предварительные каскады усиления.
Цепь ОС представляет собой пассивный 4-х полюсник с вносимым коэффициентом передачи В0. Нагрузкой цепи ОС является сопротивление входного шестиполюсника на зажимах 6-6 R`г. (рис. 2.1), а эквивалентным генератором с внутренним сопротивлением R``г – выходной шестиполюсник. (на зажимах 5-5).
2.2 Выбор транзисторов и расчет режима работы.
Расчет усилителя принято вести, начиная с выходного каскада. Он выполняется по однотактной трансформаторной схеме (рис. 2.3), которой транзистор включается по схеме с общим эмиттером, имеющей наибольшей коэффициент усиления мощности, и работает в режиме «А».
Транзистор выходного каскада выбирается по двум основным условиям:
Рк max ? ан* Ркр max, , где Ркр max = (4…5)P2, ан = 1,4…2, .
Здесь Ркр max – максимальное рабочее значение мощности, рассеиваемой на коллекторе транзистора, с учетом работы в режиме «А» и потерь мощности сигнала в выходной цепи; Рк max – максимально допустимая рассеивая мощность на коллекторе (берется из справочных данных на транзистор); ан -коэффициент запаса, введение которого предполагает использование транзисторов в облегченном режимах для повышения надежности; h21 min и h21 max – крайние значения коэффициента передачи тока из справочных данных; fT** – граничная частота коэффициента передачи тока в схеме с ОЭ; fh21 – частота среза по параметру h21.
Произведем расчет и сделаем выбор транзистора. Однако надо учитывать, что транзистор будем питать отрицательным зажимом источника питания, не так как показано на рисунке 2.3, а положительный зажим будем подавать на “землю”. Отсюда следует, что транзистор должен быть p-n-p, потому как если это будет n-p-n транзистор, то переходы будут смещены в обратном направлении, а значит ток по цепи коллектор – эмиттер течь не будет, в случае если это p-n-p транзистор переходы будут открыты и ток будет протекать.
2.4 Определение числа каскадов усилителя и выбор транзисторов предварительных каскадов.
Для расчета общего числа каскадов N усилителя (рис 2.2) следует выбирать транзисторы предварительных каскадов из серии маломощных транзисторов, проверив их только по одному условию – частоте. Подходят все транзисторы p-n-p типа fh21 ? (1,5…3)fВ. В каскадах предварительного усиления целесообразно использовать одинаковые транзисторы.
При проектировании входного каскада следует выбирать условия работы, соответствующие малому значению коэффициента шума и, в частности обеспечивать оптимальное для транзистора входного каскада значение сопротивления источника сигнала. Поэтому связь цепи усиления с источником сигнала целесообразно делать трансформаторной (рис. 2.2). коэффициент трансформации входного трансформатора n` выбирается из условия получения оптимального по шумам сопротивления источника сигнала RГ1 опт для транзистора входного каскада.
Нестабильность коэффициента усиления связана с разбросом параметров элементов и отклонением режима работы активных элементов схемы из–за изменения температуры окружающей среды и напряжения источника питания. Поскольку режимы работы стабилизируются, а разброс номинальных значений пассивных элементов невелик, то основная нестабильность SF вызывается значительным разбросом коэффициента усиления по току транзисторов в схеме с общим эмиттером h21.
3.1 Варианты схем включения каскадов.
Каскады между собой могут быть включены различными способами. Первый из этих способов – это гальваническая связь между каскадами, такой способ имеет ряд достоинств и недостатков. Достоинства заключаются в следующих факторах: экономия тока питания, улучшенная АЧХ, особенно в области нижних частот, и малые габариты, но такому методу включения каскадов присущ один недостаток – напряжения источника питания может не хватить. Выход из такой ситуации может быть следующим – использование разделительных конденсаторов, это в свою очередь приводит к ухудшению АЧХ в области низких частот, соответственно габариты схемы тоже вырастут, не только из-за разделительных конденсаторов, но из-за базового делителя напряжений.
В нашем случае, при трех каскадах усиления и источнике питания Е0 = -24 В, целесообразно использовать гальваническую связь между каскадами, т.к. источник питания достаточно.
В этой схеме делителем напряжения для последующего каскада служит предыдущий каскад. Все изменения режима предыдущего транзистора вызывают изменения в режимах последующих транзисторов. Поэтому в схеме рис. 3.1 особенна важна стабилизация первого транзистора. Для подачи напряжения на базу первого транзистора использован резистор Rб2.
5. Расчет пассивных узлов структурной схемы усилителя.
5.1 Выбор и расчет входной и выходной цепей.
Одним из важных требований, предъявляемых к усилителю в рабочем диапазоне частот, является согласование усилителя с источником сигнала и (или) внешней нагрузкой, обеспечение стабильности заданных величин входного RвхF и выходного RвыхF сопротивлений усилителя. Выполнение этого требования в значительной степени определяется величиной, реализуемой в усилителе общей ОС.
Последовательная отрицательная ОС увеличивает входное сопротивление, а параллельная уменьшает его. Тогда при глубокой ОС входное сопротивление окажется слишком большим или малым и, к тому же, зависящим от К.
При глубокой ОС входное и выходное сопротивления определяются только пассивными входной и выходной цепями и не зависят от параметров цепи усиления. Это свойство глубокой комбинированной ОС используются при построении усилителя для получения заданного входного и выходного сопротивлений.
На выбор структурной схемы влияют следующие факторы: структура цепи, в которой создается фазовый сдвиг (четное или нечетное число каскадов с общим эмиттером в цепи усиления); величина КF; необходимое значение F; простота и технологичность схемы усилителя.
Первый из указанных четырех факторов требует пояснения. Для обеспечения отрицательной обратной связи в петле ОС создается начальный фазовый сдвиг, равный 1800. Поворот фазы на 1800 можно делать в любой из цепей, входящих в петлю ОС. В цепи усиления начальный фазовый сдвиг создается за счет нечетного числа каскадов с общим эмиттером.
При повороте фазы по входной или выходной цепи следует обратить внимание на то, что цепи параллельной и последовательной ОС здесь разделены. Это приводит к необходимости согласовано изменять фазу сигнала для обоих видов ОС. Для параллельной ОС начальный фазовый сдвиг создается за счет встречного включения сопротивления в цепь ОС, а для последовательной ОС – за счет включения балансного сопротивления в эмиттерную цепь выходного транзистора. Такие схемы получили название схем с эмиттерной комбинированной ОС. Схемы с повтором фазы в цепи ОС в настоящие время не применяются.
6. Расчет и построение характеристик передачи по петле ОС.
6.1. Характеристики передачи по петле обратной связи.
Максимально допустимое значение глубины ОС Аmax(дБ) = 20lgFmax ограниченная условиями устойчивости. В соответствии с критерием Найквиста при проектировании усилителей пользуются достаточным условием, которое заключается в ограничении фазы передачи по петле ОС: argT(f) должен иметь меньше 1800 на тех частотах, где T ? I.
Чтобы гарантировать устойчивость усилителя с учетом технологических разбросов параметров радиоэлементов, введены запасы устойчивости по модулю х дБ и по фазе ? возвратного отношения. Условие устойчивости при этом определяется системой двух неравенств:
Если 20lgT + x > 0 дБ, то |argT + ?| ? 1800.
Наибольшая глубина ОС достигается при формировании ЛАХ(f) и соответственно ФЧХ argT(f) по Боде.
В рабочем диапазоне частот, где ЛАХ = const, допустимый фазовый сдвиг определяется относительным запасом по фазе у = ?/1800, который должен соблюдаться до той частоты, начиная с которой будет обеспечен запас устойчивости по Модулю. Поэтому на f > fв ФЧХ должна представлять собой линию постоянной фазы на уровне argT(f)=-1800(1 - y) =
= const. Для минимально-фазовых цепей величина допустимого фазового сдвига однозначно определяет оптимальный наклон ЛАХ Т(f) идеального среза по Боде на f > fв, который составит в пределе –12(1 - у) 6 дБ/окт. Причем, линия постоянного наклона, продолжена в рабочий диапазон частот, достигает уровня АМАХ на частоте fв/2.
На частотах f > fc положение ЛАХ Т(f) определяется асимптотами частотных характеристик каскадов усиления. Поэтому этот участок носит название асимптоты ЛАХ Т(f).
В диапазоне частот f?…fc 20lgT(f) = -x дБ, что соответствует запасу устойчивости по модулю. Этот участок характеристики Боде называется ступенькой. Ступенька формируется для того, чтобы в диапазоне частот f ? fd скомпенсировать дополнительный суммарный фазовый сдвиг, который слагается из фазового сдвига асимптоты, неминимально-фазового сдвига транзисторов и сдвига фазы из-за конечного времени распространения сигнала в петле ОС. Аналитический расчет перечисленных составляющих сложен и значительно увеличит объем курсового проекта. Поэтому предлагается длину ступеньки выбрать ориентировочно порядка 1,5…3 октав [fc/fd? 3…8].
Дальнейшие нарастание фазового сдвига arg T(f) на асимптотических частотах (в соответствии с наклоном ЛАХ на f > fc – N6 дБ/окт) до предельной величины -N*900 не нарушает устойчивости, так как на частотах f > fd уже обеспечен запас устойчивости
6.2. Факторы, влияющие на максимально допустимую глубину ОС.
Допустимая из условий устойчивости глубина ОС зависти от запасов устойчивости, наклона асимптоты и ее удаленности от верхней частоты рабочего диапазона, т.е. частоты fT ср, а так же от потерь в пассивной части на асимптотических частотах.
Запасы устойчивости. Увеличение запасов устойчивости приводит к снижению значения глубины ОС.
Запас устойчивости по фазе влияет на наклон характеристики идеального среза и ширину ступеньки с увеличением У наклон характеристики и частота fd становится меньше.
Для усилителей многоканальной связи считаются достаточными следующие запасы устойчивости:
По фазе ? = 300 – 450 (У = 1/6…1/4);
По модулю возвратного отношения х = 6…10дБ.
Наклон асимптоты. – определяется числом каскадов, так как при проектировании усилителей с глубокой близкой к максимально возможной ОС, принимают специальные меры, чтобы элементы пассивной части не создавали дополнительного наклона ЛАХ T(f).
Частота единичного усиления fT cp. Это частота на которой коэффициент передачи активной цепи становится равным 1(0 дБ). Величина fT cp зависит от выбранных транзисторов. При увеличении fT cp область асимптоты и ступеньки ЛАХ Т(f) сдвигаются в сторону более высоких частот, а допустимая глубина ОС увеличивается.
Потери в пассивной части на асимптотических частотах. Частота fT cp является частотой единичного усиления передачи по петле ОС только в том случае, если на этой частоте передача через пассивные петли ВТ=В2*В0*В1 = I. В реальных условиях пассивные цепи вносят затухание и асимптота ЛАХ Т(f) на частоте fT cp происходит ниже на величину АТ(дБ) = -20lgВт (рис. 6.1).
Чтобы увеличить допустимую глубину ОС, необходимо максимизировать передачу сигнала по петле ОС на асимптотических частотах за счет снижения потерь в пассивной части петли ОС АТ. При уменьшении АТ (рис. 6.1) асимптота и область ступеньки ЛАХ Т(f) оптимального среза сдвинется в сторону более высоких частот, а Аmax увеличится. Для уменьшения асимптотических потерь параллельно цепям пассивной части включают конденсаторы высокочастотного обхода Са, как показано на ри. 6.2 для схемы усилителя с комбинированной ОС, рассмотренных в п. 5.1.
Емкость этих конденсаторов выбирается таким образом, чтобы если они не оказывали заметного влияния в рабочем диапазоне частот. Для этого сопротивление на верхней частоте рабочего диапазона усилителя должно быть еще значительно больше, чем R цепи, параллельной которой включен конденсатор, т.е.
Са = (0,1…0,2)/(2?fВR); (6.1).
Емкости конденсаторов, включенных параллельно обмоткам входного или выходного трансформаторов, следует рассчитывать относительно RГ1 опт или RHN соответственно, величины которых определяются на этапе эскизного расчета, а Са3 – относительно соответствующего сопротивления цепи ОС.
На асимптотических частотах пассивная часть петли ОС будет представлять емкостной делитель с постоянным коэффициентом передачи. Тогда вносимое затухание цепи ОС на этих частотах АТ определяется следующим уравнением:
АТ = 20lg(1+С1/Са ЭК); (6.2).
Где С1 = СRN + CM, причем СМ = 1…10 пФ – емкость монтажа в выходной цепи транзистора.
Са = (1/Са1 + 1/ Са3 +1/Сб`э)-1; (6.3).
Скачали данный реферат: Увар, Яицкий, Anfija, Verjasov, Fedorenko, Корнеев, Кривоплясов, Karnauhov.
Последние просмотренные рефераты на тему: реферат на тему наука, реферат на тему дети, сочинение евгений онегин, решебник по химии.