Помехоустойчивое кодирование, распознавание символов
Категория реферата: Остальные рефераты
Теги реферата: шарарам ответы, антикризисное управление
Добавил(а) на сайт: Krymov.
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата
Сложные системы состоят из нескольких подсистем и уровней распознавания. Примером такого вида систем являются медицинские диагностические системы.
Работа систем без обучения осуществляется на основе априорной информации о признаках. В обучающиеся системы заложен алгоритм обучения по специально подобранной обучающей выборке. В самообучающихся системах заключены правила, по которым система сама определяет множество классов(алфавит классов).
Детерминированная система – это такая система, в которой связь между значениями признаков и классами жесткая, определенная.
Существует три подхода к задаче распознавания текстовых символов.
Первый – шаблонная (растровая) классификация. При её использовании
считанный символ сравнивают со всеми шаблонами, хранящимися в базе.
Критерии совпадения символов: а) Q=( fш (xi,yj) XOR fs (xi,yj) min( по всем шаблонам ); б) Корреляция между шаблоном и считываемым символом
R((,z)=(x (y fш (x,y) . fs (x - (, y -z) max
Преимущества: малая чувствительность к дефектам (разрывы, шумы…)
Недостатки: необходимо обучение новым шрифтам и типам размеров шрифтов.
Второй – признаковая классификация.
Преимущества: изображение символа преобразуется в простой набор признаков.
Недостатки: уход от истинного изображения.
При использовании этого метода можно использовать следующие признаки:
- размеры и соотношения размеров символов (длина, высота, площадь);
- проекции на различные оси;
- моменты относительно различных осей и соотношения между ними;
Третий – структурная классификация. Заключается в анализе топологии
символов.
Обнаружение: углов, окрестностей, линий, пересечений, конечных точек и их
взаимное расположение.
В своей работе наиболее приемлемым я счел использование шаблонной классификации на основе корреляционной функции. Использование других признаков я счёл лишним, т.к. они обладают меньшей эффективностью, а следовательно, уменьшают эффективность распознавания.
2.2 ОПИСАНИЕ ПРОГРАММЫ
Для моделирования системы распознавания я разработал программу на языке
Borland Pascal.
В программу вхолят следующие процедуры и функции.
Процедура Init_Graph_Mode осуществляет вход в графический режим при
использовании графического драйвера видеоадаптера SVGA. Т.к. драйвер
svga256.bgi не является встроенным в таблицу BGI, то для его использования
необходимо обратиться к стандартной процедуре InstallUserDriver.
Кроме того, эта процедура инициализирует палитру GrayScale путем обращения
к стандартной процедуре SetRGBPalette.
Процедура ShowList служит для отображения на экране картинки со строкой символов. Отображение идет с увеличением в 9 раз, т.е. каждый пиксель исходной картинки отображается на экране окном 3*3 одинаковых пикселей. В процедуру в качестве параметров передается x и y точки-начала координат, относительно которой и происходит отображение.
Процедура Init_Data служит для заполнения массивов данных: массивов, где содержатся считанные в память картинки.
Процедура Deranges вносит в исходную картинку помехи.
Внесение помех осуществлялось из расчёта 20% от общего веса символов.
Координаты пикселей-помех являются случайными числами в пределах ширины и
высоты картинки. Пиксель со случайными координатами инвертируется, т.е. при
попадании на белый фон ставится чёрная точка, а при попадании на символ –
белая точка.
Процедура Filter производит посильное удаление внесённых помех. Для
этого используются 16 видов масок: для удаления помех, “залезших” на
символ, для удаления групп из двух помех, для удаления помех,
“пристроившихся” к символу. При совпадении маски с фрагментом изображения
происходит изменение соответствующих пикселей.
Процедура Ramka служит для нахождения координат минимально описанного прямоугольника. Соответствующие переменные являются глобальными, процедура изменяет их значения и значение текущей координаты x. В зависимости от значения переменной flag происходит рисование полученной рамки на картинке.
Распознавание по корреляции оформлено в основном блоке программы. В процессе распознавания происходит поочерёдное выделение минимально описанных прямоугольников вокруг “испорченных” помехами символов. Затем идет цикл сравнения очередного символа со всеми шаблонами. После проверки того, что символ по размерам не меньше очередного шаблона, идет вычисление корреляционной функции. Если символ больше шаблона, то вычисляется несколько значений со смещениями по x и y, а затем из них берётся максимальное. Полученные значения сравниваются между собой. Номер шаблона, с которым получено наибольшее сходство, и будет распознанным символом.
ЗАКЛЮЧЕНИЕ
В работе были разработаны модели канала связи и системы распознавания. Моделирование было произведено с учётом возможного наличия помех. Моделирование показало работоспособность построенных моделей при достаточно высоком уровне помех.
ЛИТЕРАТУРА
Рекомендуем скачать другие рефераты по теме: реферат безопасность, земля реферат.
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата