Схемы управления электродвигателями
Категория реферата: Остальные рефераты
Теги реферата: задачи курсовой работы, реферат русь
Добавил(а) на сайт: Ревягин.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
[pic] Рис.9
Роторы асинхронных электродвигателей выполняют двух видов: с
короткозамкнутой и фазной обмотками. Первый вид двигателей называют
асинхронными двигателями с короткозамкнутым ротором, а второй –
асинхронными двигателями с фазным ротором или асинхронными двигателями с
контактными кольцами. Наибольшее распространение имеют двигатели с
короткозамкнутым ротором.
Сердечник ротора также набирают из стальных пластин толщиной 0,5мм, изолированных лаком или окалиной для уменьшения потерь на вихревые токи.
Пластины штампуют с впадинами и собирают в пакеты, которые крепят на валу
машины. Из пакетов образуются цилиндры с продольными пазами, в которых
укладывают проводники обмотки ротора. В зависимости от типа обмотки
асинхронные машины могут быть с фазным и короткозамкнутым ротором.
Короткозамкнутая обмотка ротора выполняется по типу беличьего колеса. В
пазах ротора укладывают массивные стержни, соединенные на торцевых сторонах
медными кольцами. Часто короткозамкнутую обмотку ротора изготовляют из
алюминия. Алюминий в горячем состоянии заливают в пазы ротора под
давлением. Такая обмотка всегда замкнута накоротко и включение
сопротивления в нее невозможно. Фазная обмотка ротора выполнена подобно
статорной, то есть проводники соответствующим образом соединены между
собой, образуя трехфазную систему. Обмотки трех фаз соединены звездой.
Начала этих обмоток подключены к трем контактным медным кольцам, укрепленным на валу ротора. Кольца изолированы друг от друга и от вала и
вращаются вместе с ротором. При вращении колец поверхности их скользят по
угольным или медным щеткам, неподвижно укрепленным над кольцами. Обмотка
ротора может быть замкнута на какое-либо сопротивление или накоротко при
помощи указанных выше щеток.
Двигатели с короткозамкнутым ротором проще и надежнее в эксплуатации, значительно дешевле, чем двигатели с фазным ротором. Однако двигатели с
фазным ротором обладают лучшими пусковыми и регулировочными свойствами.
В настоящее время асинхронные двигатели выполняют преимущественно с
короткозамкнутым ротором и лишь при больших мощностях и специальных случаях
используют фазную обмотку ротора.
Асинхронные двигатели производят мощностью от нескольких десятков ватт до
15000кВт при напряжениях обмотки статора до 6кВ.
Между статором и ротором имеется воздушный зазор, величина которого
оказывает существенное влияние на рабочие свойства двигателя.
Наряду с важными положительными качествами – простой конструкции и
обслуживания, малой стоимостью – асинхронный двигатель имеет и некоторые
недостатки, из которых наиболее существенным является относительно низкий
коэффициент мощности. У асинхронного двигателя соs( при полной нагрузке
может достигать значения 0,85-0,9; при недогрузках двигателя его соs
резко уменьшается и при холостом ходе составляет 0,2-0,3.
Низкий коэффициент мощности асинхронного двигателя объясняется большим
потреблением реактивной мощности, которая необходима для возбуждения
магнитного поля. Магнитный поток в асинхронном двигателе встречает на своем
пути воздушный зазор между статором и ротором, который в большей степени
увеличивает магнитное сопротивление, а следовательно, и потребляемую
двигателем мощность.
В целях повышения коэффициента мощности асинхронных двигателей воздушный
зазор стремятся делать наиболее минимальным, доводя его у малых двигателей
(порядка 2-5кВт) до 0,3мм. В двигателях большой мощности воздушный зазор
приходится увеличивать по конструктивным соображениям, но все же он не
превышает 2-2,5мм. (справочные данные в таблице см. Таблица1)
Вал ротора вращается в подшипниках, которые укреплены в боковых щитах, называемых подшипниковыми щитами. Главным образом это подшипники качения и
только в машинах большой мощности иногда используются подшипники
скольжения.
Подшипниковые щиты прикрепляют болтами к корпусу статора. В корпус запрессовывают сердечник статора.
Таблица1: Допустимые величины зазора между ротором и статором асинхронных двигателей
|Частота |Зазор, мм., при мощности электрического двигателя, кВт |
|вращения, | |
|об/мин | |
Из питающей сети (1) переменное напряжение промышленной частоты (~ U,
= f) поступает на вход выпрямителя (2).
Для сглаживания пульсаций выпрямленного напряжения на выходе выпрямителя устанавливается фильтр (3).
И уже постоянное (= U) (сглаженное) напряжение подаётся на вход управляемого импульсного инвертора тока (4).
Электронные ключи инвертора по сигналам системы управления (8) открываются и запираются таким образом, что формируемые при этом различные по длительности импульсы тока складываются в результирующую кривую синусоидальной формы с необходимой частотой.
Для сглаживания пульсаций, на выходе инвертора может устанавливаться дополнительный высокочастотный фильтр (5).
Затем напряжение подаётся на обмотки электродвигателя (М), который является приводом механизма технологической системы (6).
Подлежащий регулированию параметр технологической системы измеряется датчиком (7), управляющий сигнал от которого подаётся в систему управления
ЧРП (8). Либо внешняя система управления (9) собирает информацию о многих параметрах, характеризующих работу технологической системы, обрабатывает её и подаёт результирующий сигнал в систему управления приводом.
В зависимости от величины, иногда скорости изменения этого сигнала, и программных установок, микропроцессорная система управления ЧРП формирует и подаёт управляющие импульсы на электронные ключи выпрямителя и инвертора.
Для самоконтроля и защиты система управления собирает и обрабатывает сигналы о наличии или величине ряда параметров, характеризующих работу собственных подсистем. Контролируются токи и напряжения на входе, выходе из преобразователя и в магистрали постоянного тока. Измеряется температура элементов и регулируется производительность системы охлаждения преобразователя. Контролируется состояние отдельных элементов вплоть до отдельного ключа. При наличии специального датчика в корпусе электродвигателя измеряется, а при отсутствии датчика рассчитывается по электрическим характеристикам потребляемой двигателем энергии температура двигателя.
Таковы общие принципы частотного регулирования электроприводов.
Конкретные схемные решения в зависимости от условий различны, различаются и принципы управления частотно-регулируемым электроприводом.
Как и большинство технических решений такого рода, частотное регулирование электроприводов имеет свои недостатки и ограничения.
. Автоматическое управление двигателями переменного тока
Асинхронные двигатели с короткозамкнутым ротором запускают прямым
включением в сеть. Схемы управления двигателями переменного тока имеют
коммутационную аппаратуру, устройства защиты и различные блокировки.
Простейшей схемой управления асинхронным двигателем с короткозамкнутым
ротором является схема с автоматом и контактором или с реверсивным
магнитным пускателем.
Схема пуска асинхронного двигателя с помощью контактора показана на рис.21
Рис.21
Защитные функции выполняет автомат QF, отключающий двигатель при коротких
замыканиях и чрезмерных бросках тока. Контактор КМ обеспечивает
дистанционное управление двигателем с помощью кнопок управления SB1, SB2.
Схема управления асинхронного двигателя с помощью реверсивного магнитного пускателя показана на рис.22
Рис.22
Защита двигателя от коротких замыканий осуществляется плавкими вставками, а от перегрузок – встроенными в магнитный пускатель M тепловыми реле FP1 и
FP2. Магнитный пускатель производит дистанционный пуск, реверс и остановку
асинхронных двигателей мощностью до 75кВт, работающих в продолжительном
режиме. Иногда его можно использовать при кратковременном или повторно-
кратковременном режиме с небольшим количеством включений в час. Командным
аппаратом является кнопочная станция с кнопками SB1 («Стоп»), SB2 («Назад»)
и SB3 («Вперед»). Торможение в рассмотренных схемах осуществляется за счет
трения в подвижных частях механизма.
Схема торможения асинхронного электродвигателя в функции времени
(Рис.23, а). При вращении двигателя реле времени КТ включено и замыкающим
контактом подготавливает цепь контактора торможения КМТ к работе. При
нажатии кнопки SB1(«Стоп») контактор КМ теряет питание и своим размыкающим
контактом подключает контактор КМТ к сети. Начинается процесс динамического торможения двигателя, длительность которого определяется установкой реле
КТ.
Рис.23, а. Схема динамического торможения асинхронного двигателя в
функции времени
Схема торможения АД в функции времени с прямым её контролем
индукционным реле (Рис.23, б). При включенном двигателе контактор КМВ
втянут, реле КС, замкнув свой контакт, подготовило к включению контактор
КМТ. После нажатия кнопки SB1(«Стоп») контактор КМВ отключается и своим
вспомогательным контактом включает контактор КМТ. Начинается процесс
торможения в режиме противовключения. При угловой скорости двигателя, близкой к нулю, контакт реле К размыкается и отключает контактор КМТ, двигатель останавливается.
[pic]
Рис.23, б
Типовые схемы управления электрическими двигателями постоянного тока
. Пуск в ход двигателей постоянного тока
В начальный момент пуска в ход якорь двигателя неподвижен, противо-
ЭДС равна нулю (Е=0). При непосредственном включении двигателя в сеть в
обмотке якоря будет протекать чрезмерно большой ток Iпус=U/Rя. Поэтому
непосредственное включение в сеть допускается только для двигателя очень
маленькой мощности, у которых значение падения напряжения в якоре
относительно большое и изменения тока не столь велики.
В машинах постоянного тока большой мощности падение напряжения в
обмотке якоря при полной нагрузке составляет несколько процентов от
номинального напряжения, т.е.
IRя=(0,02—0,01)U. Следовательно, пусковой ток в случае включения двигателя
в сеть с номинальным напряжением во много раз превышает номинальный.
При пуске в ход для ограничения пускового тока используют реостаты, включаемые последовательно с якорем двигателя.
Пусковые реостаты представляют собой проволочные сопротивления, рассчитываемые на кратковременный режим работы, и выполняются ступенчатыми, что дает возможность изменять ток в якоре двигателя в процессе пуска его в
ход.
Схема двигателя параллельного возбуждения с пусковым реостатом показана на рис.24.
Рис.24
Пусковой реостат этого двигателя имеет три зажима, обозначаемые буквами Л,
Я, Ш. Зажим Л соединен с движком реостата и подключается к одному из
полюсов рубильника (к линии). Зажим Я соединяется с сопротивлением реостата
и подключается к зажиму якоря. Зажим Ш соединен с металлической шиной, помещенной на реостате (шунт). Движок реостата скользит по шине так, что
между ними имеется непрерывный контакт. К зажиму Ш через регулировочный
резистор Rр присоединяется обмотка возбуждения. Другие зажимы якоря и
обмотки возбуждения соединены между собой перемычкой и подключены к другому
полюсу рубильника, включающего двигатель в сеть. При пуске в ход включается
рубильник и движок реостата переводится на контакт 1, так, что
последовательно с якорем соединено полное сопротивление реостата ПР, которое выбирается таким, чтобы больший ток при пуске в ход Imax не
превышал номинальный ток более чем в 1,7(2,5 раза, т.е. Rn=(U/Imax)—Rя. При
включении двигателя в сеть по обмотке возбуждения также проходит ток, возбуждающий магнитный поток. В результате взаимодействия тока в якоре с
магнитным полем полюсов создается пусковой момент. Если пусковой момент
окажется больше тормозного момента на валу двигателя (Мпуск>Мт), то якорь
машины придет во вращение.
Когда ток в якоре уменьшится до небольшого значения Imin, движок пускового реостата переводится на контакт 2, при этом сопротивление реостата уменьшится на одну ступень. Ток в якоре снова возрастет до значения Imax, а с увеличением тока в якоре возрастет вращающий момент, вследствие чего частота вращения ротора вновь увеличится. Переключая движок реостата, сопротивление пускового реостата постепенно (ступенями) уменьшается, пока оно полностью не будет выведено (движок реостата на контакте 5), и в рабочем режиме ток и частота вращения якоря принимают установившиеся значения.
При отключении двигателя от сети металлическая шина пускового реостата должна быть соединена с зажимом 1. Это необходимо для того, чтобы не было разрыва цепи обмотки возбуждения, имеющий значительную индуктивность. Кроме того, движок пускового реостата переводится на холостой контакт 0, и рубильник отключается.
. Регулирование частоты вращения двигателей постоянного тока
В двигателях постоянного тока имеется возможность плавно и экономично регулировать частоту вращения в широких пределах. Благодаря этому весьма ценному свойству они получили широкое распространение и часто являются незаменимыми. Частота вращения якоря двигателя при любой схеме возбуждения определяется следующим выражением:
[pic], где Rc – сопротивление последовательной обмотки возбуждения (Для двигателя параллельного возбуждения Rc=0). Это выражение показывает, что частота вращения двигателя зависит от напряжения сети, сопротивления цепи якоря и магнитного потока.
Частоту вращения регулируют путем изменения напряжения сети в том случае, когда источником электрической энергии двигателя является какой- либо генератор.
Для регулирования частоты вращения двигателя изменением сопротивления цепи якоря используется регулировочный реостат, включенный последовательно с якорем. В отличие от пускового регулировочный реостат должен быть рассчитан на длительное прохождение тока. В сопротивлении регулировочного реостата происходит большая потеря энергии, вследствие чего резко уменьшается КПД двигателя.
Регулируют частоту вращения якоря двигателя также изменением магнитного потока, который зависит от тока в обмотке возбуждения. В двигателях параллельного и смешанного возбуждения включается регулировочный реостат, а в двигателях последовательного возбуждения для этой цели шунтируют обмотку возбуждения каким-либо регулируемым сопротивлением. Этот способ регулирования частоты практически не создает дополнительных потерь и экономичен.
. Автоматическое управление двигателями постоянного тока
Типовая схема автоматического пуска двигателя в функции времени в две ступени показана на рис.25
[pic]Рис.25
Для автоматического пуска используют два электромагнитных реле
времени КТ1 и КТ2, контакты которых работают с выдержкой времени только при
отключении реле. После подачи напряжения в цепь управления (перед пуском
двигателя) реле КТ1 получает питание и, втягиваясь, размыкает свой контакт, не позволяя тем самым сразу включать контакторы ускорения КМ2 и КМ3. После
включения контактора КМ1 двигатель работает на искусственной характеристике
1 (см.рис.26).
Рис.26
Рекомендуем скачать другие рефераты по теме: компьютер реферат, реферат здания.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата