Статистическое прогнозирование урожайности зерновых культур
Категория реферата: Рефераты по статистике
Теги реферата: реферат образование, рефераты по медицине
Добавил(а) на сайт: Яцевич.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата
Коэффициент автокорреляции первого порядка вычисляется по формуле:
[pic], (8)
При «пилообразной» колеблемости все произведения в числителе
коэффициента будут отрицательны и будет получена существенная величина
коэффициента. Напротив, при долгопериодической колеблемости подавляющая
часть произведений – в числителе, притом наибольшее при абсолютной величине
будут положительны, и в результате коэффициент автокорреляции окажется
существенно положительным. При случайно распределенной во времени
колеблемости одинаково вероятно любое чередование знаков отклонений от
тренда. Поэтому окажется примерно поровну положительных и отрицательных
произведений, а коэффициент окажется несущественно отличным от нуля.
Существенность отличия коэффициента автокорреляции проверяется по
специальным таблицам.
2.3. Прогнозирование на основе динамических рядов
Одно из важнейших практических применений статистического изучения тенденций динамики и колеблемости состоит в прогнозировании на его основе возможных оценок величины изучаемого признака. Прогнозирование на основе измерения тренда и колеблемости один из методов статистического прогнозирования.
Статистический прогноз – это вероятностная оценка возможностей развития того или иного объекта (процесса) и величины его признаков в будущем, полученная на основе статистической закономерности, выявленной по данным прошлого периода. Он предназначен либо для планирования управления объекта, либо для выработки стратегии поведения субъекта, если объект не управляем.
Статистический прогноз предполагает не только верное качественное предсказание, но и достаточно точное количественное измерение вероятных возможностей ожидаемых значений признаков. Для данной цели необходимо, чтобы прогностическая модель имела достаточную точность или допустимо малую ошибку прогноза. Ошибка статистического прогноза будет тем меньше, чем меньше срок упреждения – временной промежуток от базы прогноза до прогнозируемого периода, и чем длиннее база прогноза – прошлый период, однородный по закономерностям развития, на основе информации за который построена прогностическая модель. Для определения срока упреждения используют чисто эмпирическое правило: в большинстве случаев срок упреждения не должен превышать третьей части длины базы прогноза.
Ошибка прогноза связана прямой зависимостью с колеблемостью. Поэтому сила колебаний должна учитываться при выборе соотношения между длиной базы прогноза и сроком упреждения. Чем сильнее колеблемость, тем большим должно быть это соотношение.
Область применения метода прогнозирования не основе тренда и колеблемости весьма широка, что вытекает из большого значения изучения трендов и колеблемости в социально-экономических науках, а так же в процессе практического планирования и управления производством. Одним из самых ярких примеров может служить прогнозирование урожайности на основе трендовой модели, а значит и объема продукции растениеводства, так как среди факторов, влияющих на урожайность, значительную роль играют метеорологические явления, которые в настоящее время наука не в состоянии прогнозировать даже на год в перед, а трендовая модель и измерение колеблемости позволяют рассчитывать вероятные границы прогнозируемой урожайности на несколько лет вперед.
Прогнозирование всегда опирается на опыт развития изучаемого явления в прошлом. Поэтому любой прогноз как выход за пределы изучаемого периода можно рассматривать как экстраполяцию.
Прогноз выражается как в виде точечной или интервальной оценке.
Точечный прогноз есть оценка прогнозируемого показателя в точке (в
конкретном году, месяце, дне, середине периода прогноза) по уравнению, описывающему тенденцию показателя.
Точечная оценка рассчитывается путем подстановки номера года, на который рассчитывается прогноз, в уравнение тренда. Она является средней оценкой для прогнозируемого интервала времени. Так, точечный прогноз указывает ту величину урожайности, на которую в среднем выйдет объект на прогнозируемый год, если тенденция динамики урожайности сохранится. Эту величину можно использовать в планирование.
Интервальный прогноз по типу прогнозируемого показателя распадается на три вида: прогноз вероятных границ тренда; прогноз вероятных границ уровней отдельных лет с учетом их возможной колеблемости относительно тренда; прогноз вероятных границ среднегодовых уровней динамического ряда.
Прогноз вероятных границ тренда для любого заданного года (срока упреждения) отвечает на вопрос о том, в границах какого интервала окажется с заданной вероятность уровень тренда [pic] в году с номером tk, после того как станут известны все уровни yi отдельных лет, начиная от следующего за концом базы прогноза уровня [pic] и до уровня в прогнозируемом году yk (l – период упреждения, k-l – база прогноза). При однократном выравнивании для определения параметра линейного тренда – среднегодового абсолютного прироста – средняя ошибка прогноза тренда для года с номером tk, отсчитываемого от середины прогноза, вычисляется по формуле:
[pic], (9)
где [pic] – обозначение средней ошибки прогноза тренда;
[pic] – оценка среднего квадратического отклонения отдельных уровней от тренда;
N – число уровней динамического ряда.
Среднее квадратическое отклонение получают при однократном выравнивании. Из формулы следует, что ошибка прогноза тренда получается как дисперсия суммы. Первое слагаемое подкоренного выражения – это квадрат средней ошибки параметра а0 – свободного члена уравнения линейного тренда, то есть средней ошибки уровня ряда, обратно пропорциональной числу членов ряда, рассматриваемого как выборка. Второе – это дисперсия оценки второго параметра а1, то есть среднегодового прироста, умноженного на число лет от середины базы прогноза до прогнозируемого периода, так как ошибка в прогнозе возрастает пропорционально числу лет. Так как параметры а0 и а1 – линейно независимы, то применяется сложение по правилам дисперсии суммы независимых величин.
Для вычисления вероятных границ прогноза тренда необходимо среднюю ошибку прогноза умножить на величину t критерия или нормального распределения, чтобы получить вероятную ошибку прогноза тренда а[pic]
а[pic]=[pic][pic] (10)
Вероятный интервал прогноза тренда равен точечному прогнозу плюс-минус вероятная ошибка
[pic][pic] а[pic], (11)
Вероятную ошибку и интервал целесообразно вычислять с достаточно близкими t единицы вероятности: Конкретный выбор вероятности или надежности прогноза зависит от его задач и от силы колебаний. При прогнозе конкретного, уровня ряда динамики в силу того, что конкретный уровень зависит как от тренда, так и от колеблемости, средняя ошибка прогноза рассчитывается по формуле:
[pic], (12) где [pic] – средняя ошибка тренда;
Рекомендуем скачать другие рефераты по теме: скачать изложение, конфликт реферат, шпоры по математике.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата