Физические свойства вакуумно-плазменных покрытий для режущего инструмента
Категория реферата: Рефераты по технологии
Теги реферата: сочинение по картине, шпори психологія
Добавил(а) на сайт: Dobromira.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
Преимущества метода катодного распыления в следующем:
- безынерционность процесса
- низкие температуры процесса
- возможность получения пленок тугоплавких металлов и сплавов (в том числе и многокомпонентных)
- сохранение стехиометрического исходного материала при напылении
- возможность получения равномерных по толщине пленок
Метод имеет недостатки:
- низкая скорость осаждения (0.3-1 нм/с)
- загрязнение пленок рабочим газом вследствие проведения процесса при высоких давлениях
- низкая степень ионизации осаждаемого вещества
Магнетронное распыление. Является разновидностью метода нанесения тонких пленок на основе тлеющего разряда. Магнетронные системы ионного распыления относятся к системам распыления диодного типа, в которых атомы распыляемого материала удаляются с поверхности мишени при ее бомбардировке ионами рабочего газа (обычно Ar), образующимися в плазме аномального тлеющего разряда.
В магнетронной распылительной системе катод (мишень) помещается в скрещенное электрическое (между катодом и анодом) и магнитное поле, создаваемое магнитной системой. Магнитное поле позволяет локализовать плазму аномального тлеющего разряда непосредственно у мишени.
Суть метода состоит в следующем (Рис.3), в систему анод-катод
подается постоянный электрический ток (2-5 А), который приводит к
возникновению между мишенью (отрицательный потенциал) и анодом
(положительный или нулевой потенциал) неоднородного электрического поля и
возбуждению аномального тлеющего разряда. Электроны, выбитые из катода под
действием ионной бомбардировки, подвергаются воздействию магнитного поля, возвращающего их на катод, с одной стороны, с другой – поверхностью мишени, отталкивающей электроны. Это приводит к тому, что электроны совершают
сложное циклическое движение у поверхности катода. При движении электроны
многократно сталкиваются с атомами аргона, обеспечивая высокую степень
ионизации, что приводит к возрастанию интенсивности ионной бомбардировки
мишени, а следовательно и к возрастанию скорости распыления.
Преимущества метода:
- высокая скорость распыления при низких рабочих напряжениях (600-800 В) и при небольших давлениях рабочего газа (5(10-1 -10 Па)
- отсутствие перегрева подложки
- малая степень загрязнения пленок
- возможность получения равномерных по толщине пленок на большей площади подложек
Высокочастотное распыление. Данный метод применяется в том
случае, если материалом мишени является диэлектрик. Для распыления
диэлектрика необходимо периодически нейтрализовать положительный заряд на
нем. Для этого к металлической пластине, расположенной непосредственно за
распыляемой диэлектрической мишенью, прикладывают напряжение с частотой 1-
20 МГц.
Плазменное распыление в несамостоятельном разряде. В распылительных системах данного типа горение газового разряда поддерживается дополнительным источником (магнитное поле, высокочастотное поле).
Преимущества метод РИБ:
- сохранение стехиометрического состава пленок при распылении многокомпонентных сплавов
- высокий коэффициент использования распыляемого вещества
- возможность получения равномерных по толщине покрытий на подложке большей площади
- высокая адгезия пленок
Сущность МТИ состоит в том, что в специальных испарителях вещество нагревают до температуры, при которой начинается заметный процесс испарения.
Все испарители отличаются между собой в зависимости от способа нагрева испаряемого вещества: резистивного, индукционного, электродугового и др.
Резистивное испарение. Тут тепловую энергию для нагрева вещества получают за счет выделения теплоты при прохождении тока через нагреватель.
Электродуговое испарение. Нагрев катода с последующей эмиссией
электронов, осуществляется по средствам зажигания в вакуумной камере
электродуги (Рис.4). Особенностью данного метода является то, что
электрический ток, создающий дугу, подается в цепь, содержащую катод
(отрицательный потенциал) и корпус вакуумной камеры (положительный
потенциал). Электрическая дуга производит локальный разогрев поверхности
катода, в результате чего последняя, переходя в жидкостную фазу, и в виде
капель распространяется по объему вакуумной камеры. Капельная фаза приводит
к неоднородности химического состава покрытия. Для уменьшения брызгового
эффекта производится тщательная предварительная дегазация катода.
Преимущества метода нанесения тонких пленок вакуумным
электродуговым методом:
- возможность регулирования скорости нанесения покрытия путем изменения силы тока дуги
- возможность управлять составом покрытия, используя одновременно несколько катодов или один многокомпонентный катод
- высокая адгезия покрытий
- возможность получения тонких пленок металлов, вводя в камеру реакционный газ
Основные преимущества МТИ в следующем:
- возможность нанесения пленок металлов (в том числе тугоплавких), сплавов, полупроводниковых соединений и диэлектрических пленок
- простота реализации
- высокая скорость испарения вещества и возможность регулирования ее в широких пределах за счет изменения подводимой к испарению мощности
- возможность получения покрытий, практически свободных от загрязнения
Методы ФОП, несмотря на некоторые присущие им недостатки
(например, невозможность осаждения покрытий в больших углублениях и
сложность нагрева подложки в вакууме), в целом наиболее перспективны для
нанесения износостойких покрытий на режущие инструменты. Связано это, во-
первых, с возможностью точного регулирования технологических процессов и их
полной автоматизации. Во-вторых, низкая температура процесса позволяет
обрабатывать любые инструментальные материалы и при этом достигать высокой
адгезии покрытия с основой. В-третьих, высокая скорость формирования
покрытия. И, наконец, метод ФОП безопасен для окружающей среды и
экономически выгоден [6].
6. Классификация износостойких покрытий для режущего инструмента.
6.1. Основные положения.
Все элементы Периодической системы подразделяются на группы
электронных аналогов, атомы которых имеют аналогичные строения электронных
оболочек:
- s-элементы, имеющие полностью заполненные внешние s-оболочки
- d- и f-элементы, имеющие незаполненные d- и f-оболочки
- sp-элементы, имеющие валентные s,p-электроны (неметаллы)
Данной классификация поясняет деление всех тугоплавких
соединений, применяемых в качестве покрытий, на три группы:
- металлоподобные тугоплавкие соединения, образуемые d- и f-переходными металлами (бориды, карбиды, нитриды)
- металлоподобные тугоплавкие соединения, образуемые между собой в основном d- и f-переходными металлами, а также вырожденными металлами из sp-групп электронных аналогов
- неметаллические тугоплавкие соединения, образуемые взаимным сочетанием неметаллов (оксиды)
Наиболее широко в качестве износостойких покрытий применяются
соединения тугоплавких d-переходных металлов IV-VI Периодической системы
элементов с кислородом, углеродом и азотом [5]. Это связано с особенностями
их кристаллохимического строения:
- Во-первых, эти металлы имеют недостаток электронов на внутренних s, p и d орбиталях, и это приводит к тому, что они с достаточной легкостью могут приобретать электроны из любого источника, которым может служить междоузельные атомы углерода, азота и кислорода.
- Во-вторых, большинство переходных металлов имеют достаточно большие атомные радиусы и при образовании соединений с атомами C,N и O могут подчинятся правилу Хэгга, согласно которому отношение радиуса атома неметалла к радиусу атома металла меньше критического значения 0.59. Для соединений металлов IV группы (Ti,Zr,Hf) достаточно точно выдерживается правило Хэгга, что приводит к образованию простых структур, в которых превалирует связь металл-металл, а атомы C,H,O можно рассматривать как вставленные в решетку атомов металла.
- В-третьих, большинство переходных металлов имеют широкие области гомогенности, что позволяет в зависимости от содержания кислорода, азота и углерода достаточно сильно изменять физико-механические свойства их карбидов, нитридов и оксидов.
- В-четвертых, переходные металлы и некоторые их соединения, в первую очередь соединения с простой кубической структурой типа NaCl
(ZrC,ZrN,TiN,VC,TaC), отличаются очень высокими температурами плавления.
Соединения металлов IV-VI групп с кислородом, углеродом и азотом можно рассматривать и как наиболее устойчивый (в термодинамическом отношении) материал для покрытий, способный противостоять твердо- и жидкофазным диффузионным реакциям, коррозии и окислению при высоких температурах. Ниже будет показано, что свойства соединений тугоплавких металлов с О,N и С при обычных и повышенных температурах сильно зависят от многих факторов: состава (стехиометрии), наличия примесей, микроструктуры и текстуры, пористости и т.д.
6.2. Одноэлементные, однослойные покрытия.
6.2.1. Соединения, используемые в качестве покрытий.
Рекомендуем скачать другие рефераты по теме: реферат на тему життя, бесплатные рефераты скачать, сочинения 4.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата