Основные и нетрадиционные способы получения электроэнергии
Категория реферата: Рефераты по технологии
Теги реферата: учреждения реферат, содержание реферата курсовые работы
Добавил(а) на сайт: Янсон.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2. Тепло, выделяется в активной зоне реактора, теплоносителем, вбирается водой (теплоносителем 1-го контура), которая прокачивается через реактор циркуляционным насосом 2. Нагретая вода из реактора поступав в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образованный пар поступает в турбину 4.
Наиболее часто на АЭС применяют 4 типа реакторов на тепловых нейтронах
1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя; 2)
графито-водные с водяным теплоносителем и графитовым замедлителем; 3)
тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве
замедлителя 4) графито-газовые с газовым теплоносителем и графитовым
замедлителем.
В России строят главным образом графито-водные и водо-водяные реакторы.
На АЭС США наибольшее распространение получили водо-водяные реакторы.
Графито-газовые реакторы применяются в Англии. В атомной энергетике Канады
преобладают АЭС с тяжеловодными реакторами.
В зависимости от вида и агрегатного состояния теплоносителя создается тот или иной термодинамический цикл АЭС. Выбор верхней температурной границы термодинамического цикла определяется максимально допустимой температурой оболочек тепловыделяющих элементов (ТВЭЛ), содержащих ядерное горючее, допустимой темп-рой собственно ядерного горючего, а также свойствами теплоносителя, принятого для данного типа реактора. На АЭС тепловой реактор, которой охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными давлением и температурой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур — пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева.(рис. 3).
В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания.
При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, и топливо выгорает. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанционным управлением. Отработавшее топливо переносят в бассейн выдержки, а затем направляют на переработку.
К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой, теплообменники, насосы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляции контура; устройства для перезагрузки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.
В зависимости от конструктивного исполнения реакторы имеют
отличительные, особенности: в корпусных реакторах топливо и замедлитель
расположены внутри корпуса, несущего полное давление теплоносителя; в
канальных реакторах топливо, охлаждаемые теплоносителем, устанавливаются в
спец. трубах-каналах, пронизывающих замедлитель, заключённый в
тонкостенный кожух. Такие реакторы применяются в России (Сибирская,
Белоярская АЭС и др.),
Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, песок. Оборудование реакторного контура должно быть полностью герметичным. Предусматривается система контроля мест возможной утечки теплоносителя, принимают меры, чтобы появление не плотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружающей местности. Оборудование реакторного контура обычно устанавливают в герметичных боксах, которые отделены от остальных помещений АЭС биологической защитой и при работе реактора не обслуживаются, Радиоактивный воздух и небольшое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС спец. системой вентиляции, в которой для исключения возможности загрязнения атмосферы предусмотрены очистные фильтры и газгольдеры выдержки. За выполнением правил радиационной безопасности персоналом АЭС следит служба дозиметрического контроля.
При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания.
Наличие биологической защиты, систем специальной вентиляции и аварийного расхолаживания и службы дозиметрического контроля позволяет полностью обезопасить обслуживающий персонал АЭС от вредных воздействий радиоактивного облучения.
Оборудование машинного зала АЭС аналогично оборудованию машинного зала
ТЭС. Отличительная, особенность большинства АЭС — использование пара
сравнительно низких параметров, насыщенного или слабо перегретого.
При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепарирующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи с тем, что теплоноситель и содержащиеся в нём примеси при прохождении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины одноконтурных АЭС должно полностью исключать возможность утечки теплоносителя. На двухконтурных АЭС с высокими параметрами пара подобные требования к оборудованию машинного зала не предъявляются.
В число специфичных требований к компоновке оборудования АЭС входят: минимально возможная протяжённость коммуникаций, связанных с радиоактивными средами, повышенная жёсткость фундаментов и несущих конструкций реактора, надёжная организация вентиляции помещений. В реакторном зале размещены: реактор с биологической защитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочному принципу реактор—турбина. В машинном зале расположены турбогенераторы и обслуживающие их системы. Между машинным и реакторным залами размещены вспомогательные оборудование и системы управления станцией.
В большинстве промышленно развитых стран (Россия, США, Англия, Франция,
Канада, ФРГ, Япония, ГДР и др.) мощность действующих и строящихся АЭС к
1980 доведена до десятков Гвт. По данным Международного атомного агентства
ООН, опубликованным в 1967, установленная мощность всех АЭС в мире к 1980
достигла 300 Гвт.
За годы, прошедшие со времени пуска в эксплуатацию первой АЭС, было создано несколько конструкций ядерных реакторов, на основе которых началось широкое развитие атомной энергетики в нашей стране.
АЭС являющиеся наиболее современным видом электростанций, имеют ряд
существенных преимуществ перед другими видами электростанций: при
нормальных условиях функционирования они абсолютно не загрязняют окружающую
среду, не требуют привязки к источнику сырья и соответственно могут быть
размещены практически везде, новые энергоблоки имеют мощность практически
равную мощности средней ГЭС, однако коэффициент использования установленной
мощности на АЭС (80%) значительно превышает этот показатель у ГЭС или ТЭС.
Об экономичности и эффективности атомных электростанций может говорить тот
факт, что из 1 кг урана можно получить столько же теплоты, сколько при
сжигании примерно 3000 т каменного угля.
Значительных недостатков АЭС при нормальных условиях функционирования практически не имеют. Однако нельзя не заметить опасность АЭС при возможных форсмажорных обстоятельствах: землетрясениях, ураганах, и т. п. - здесь старые модели энергоблоков представляют потенциальную опасность радиационного заражения территорий из-за неконтролируемого перегрева реактора.
II. Нетрадиционные источники энергии
Ученые предостерегают: разведанных запасов органического топлива при
нынешних темпах роста энергопотребления хватит всего на 70-130 лет.
Конечно, можно перейти и на другие невозобновляемые источники энергии.
Например, ученые уже многие годы пытаются освоить управляемый термоядерный
синтез...
1. Ветровая энергия
Огромна энергия движущихся воздушных масс. Запасы энергии ветра более
чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и
повсюду на земле дуют ветры – от легкого ветерка, несущего желанную
прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и
разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем.
Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все
ее потребности в электроэнергии! Климатические условия позволяют развивать
ветроэнергетику на огромной территории – от наших западных границ до
берегов Енисея. Богаты энергией ветра северные районы страны вдоль
побережья Северного Ледовитого океана, где она особенно необходима
мужественным людям, обживающим эти богатейшие края. Почему же столь
обильный, доступный да и экологически чистый источник энергии так слабо
используется? В наши дни двигатели, использующие ветер, покрывают всего
одну тысячную мировых потребностей в энергии.
По оценкам различных авторов, общий ветроэнергетический потенциал Земли
равен 1200 ГВт, однако возможности использования этого вида энергии в
различных районах Земли неодинаковы. Среднегодовая скорость ветра на высоте
20–30 м над поверхностью Земли должна быть достаточно большой, чтобы
мощность воздушного потока, проходящего через надлежащим образом
ориентированное вертикальное сечение, достигала значения, приемлемого для
преобразования. Ветроэнергетическая установка, расположенная на площадке, где среднегодовая удельная мощность воздушного потока составляет около 500
Вт/м2 (скорость воздушного потока при этом равна 7 м/с), может
преобразовать в электроэнергию около 175 из этих 500 Вт/м2.
Энергия, содержащаяся в потоке движущегося воздуха, пропорциональна
кубу скорости ветра. Однако не вся энергия воздушного потока может быть
использована даже с помощью идеального устройства. Теоретически коэффициент
полезного использования (КПИ) энергии воздушного потока может быть равен
59,3 %. На практике, согласно опубликованным данным, максимальный КПИ
энергии ветра в реальном ветроагрегате равен приблизительно 50 %, однако и
этот показатель достигается не при всех скоростях, а только при оптимальной
скорости, предусмотренной проектом. Кроме того, часть энергии воздушного
потока теряется при преобразовании механической энергии в электрическую, которое осуществляется с КПД обычно 75–95 %. Учитывая все эти факторы, удельная электрическая мощность, выдаваемая реальным ветроэнергетическим
агрегатом, видимо, составляет 30–40 % мощности воздушного потока при
условии, что этот агрегат работает устойчиво в диапазоне скоростей, предусмотренных проектом. Однако иногда ветер имеет скорость, выходящую за
пределы расчетных скоростей. Скорость ветра бывает настолько низкой, что
ветроагрегат совсем не может работать, или настолько высокой, что
ветроагрегат необходимо остановить и принять меры по его защите от
разрушения. Если скорость ветра превышает номинальную рабочую скорость, часть извлекаемой механической энергии ветра не используется, с тем чтобы
не превышать номинальной электрической мощности генератора. Учитывая эти
факторы, удельная выработка электрической энергии в течение года, видимо, составляет 15–30% энергии ветра, или даже меньше, в зависимости от
местоположения и параметров ветроагрегата.
Новейшие исследования направлены преимущественно на получение
электрической энергии из энергии ветра. Стремление освоить производство
ветроэнергетических машин привело к появлению на свет множества таких
агрегатов. Некоторые из них достигают десятков метров в высоту, и, как
полагают, со временем они могли бы образовать настоящую электрическую сеть.
Малые ветроэлектрические агрегаты предназначены для снабжения
электроэнергией отдельных домов.
Рекомендуем скачать другие рефераты по теме: изложение на родине ломоносова, экологические рефераты, профессиональные рефераты.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата