Белки семян как маркеры в решении проблем генетических ресурсов растений, селекции и семеноводства
Категория реферата: Биология и химия
Теги реферата: реферат по технологии, сочинения по русскому языку
Добавил(а) на сайт: Анатолия.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
Любой хранитель (собственник) генетических ресурсов заинтересован обеспечить как охрану своих авторских прав на исходный материал, источники и доноры, так и официальное признание участия этого генетического материала в создании тех или иных сортов в своей стране и за рубежом. ММ оказывают здесь реальную помощь, обеспечивая независимую информацию о происхождении и степени родства генетического материала сравниваемых образцов. В ВИРе накоплен большой опыт использования белковых маркеров в решении спорных вопросов авторства сортов, их оригинальности, подлинности, чистоты, природы исходного материала и т.д., когда использование набора традиционных методов, в том числе и грунт контроля, не давало желаемого результата [4,19]. Эффективность такой работы во многом обеспечивается наличием в ВИР каталогов белковых формул и баз данных этих формул с информацией о сотнях сортов, в том числе давно снятых с районирования, а также о многих образцах различного происхождения, хранящихся в коллекции (табл.2). Важно подчеркнуть, что даже не являясь тестом, который может быть официально признан как единственный аргумент, молекулярный метод обеспечивает предварительную, независимую и оперативную информацию.
Использование молекулярных маркеров в селекции. Белковые маркеры на протяжении последних десятилетий используются в селекционных программах для решения многих вопросов (табл. 1). Этому посвящено большое число отечественных и зарубежных публикаций [6,7]. В ВИРе проламиновые спектры, в частности, используются для отбора определенных генотипов (по соответствующим типам спектра) при селекции различных культур. Так в ходе селекции сорта озимой пшеницы «Тюменская ранняя» с помощью спектров глиадина формировался «желаемый» генотипный состав создаваемого сорта (НИИСХ Северного Зауралья).
Весьма наглядным является пример связи между белковой формулой генотипов у сортов озимой мягкой пшеницы и устойчивостью этих генотипов (сортов, имеющих данные генотипы) к низким температурам. Одним из основных свойств, которым должна обладать озимая мягкая пшеница является зимостойкость. Из характеристик, обуславливающих зимостойкость, наиболее изучена морозостойкость. Последняя контролируется многими генами, локализованными в разных хромосомах. Это, естественно, затрудняет исследование признака зимостойкости, его маркирование и соответствующую селекцию. По данным А.А.Созинова и сотрудников [7] сорта озимой пшеницы, в составе спектров глиадина которых присутствуют определенные блоки компонентов, обладают повышенной зимостойкостью. Согласно биохимической номенклатуре компонентов глиадина, разработанной в ВИРе это соответствует компонентам: г2щ78 (блок Gld 1A1), г1щ67 (блок Gld 1A2), г13щ5819 10 (блок Gld 1D5), 62467в1 (блок Gld 6A3) и 657в245 (блок Gld 6D2). Исследования были проведены на большом числе сортов озимых мягких пшениц (около 300) разных экологических групп (групп селекции) [36]. Морозостойкость растений определялась методом прямого промораживания в посевных ящиках. Дифференциирующими температурами были -15С и -18С. Действительно, большинство сортов с высокой и повышенной морозостойкостью характеризуется указанными выше блоками (группами) компонентов глиадина. Так на большом числе сортов показано, что наличие генотипа с компонентами 62467 и щБ^ 10 придает сорту повышенную морозостойкость (табл. 4) [36]. Дело, однако, усложняется в ходе анализа генотип-ного состава сортов. Как правило, не удается обеспечить 100% концентрацию выдающихся генотипов по одному признаку и селекционеры вынуждены «разбавлять» сорт другими генотипами, обеспечивающими другие характеристики, но, обладающими меньшей зимостойкостью. Особенно хорошо это заметно при анализе родословных некоторых наших отечественных сортов озимой мягкой пшеницы. В родословной озимых мягких пшениц одесской селекции на первом этапе присутствует морозостойкий сорт Гостианум 237 (группа морозостойкости 1). Выяснено, что если после последующих скрещиваний полученные сорта по проламиновым спектрам были близки к Гостианум 237 (в частности, по наличию и частоте встречаемости генотипов с компонентами 62467 и компонентами 8Х9 10 в щ-зоне), они также обладали хорошей морозостойкостью. Таким образом, спектры глиадина можно использовать для определения потенциальной морозостойкости сортов озимой мягкой пшницы в пределах определенных групп селекции. При этом необходимо знать белковую формулу генотипа (генотипов) морозостойкого сорта, который явился источником данного признака в ходе селекции. Это позволит вести контроль за включением его генетического материала во вновь создаваемые сорта.
В данном случае казалось бы речь идет об использовании простой маркерной системы для маркирования полигенного признака (морозостойкость). Но фактически маркируется не признак, а то что называется интегральным состоянием генома. Маркируется генотип вместе с его адаптивным генным комплексом. Поэтому упомянутый специфический спектр не является в строгом смысле маркером морозостойкости (хотя нельзя отрицать и адаптивного характера полиморфизма проламинов). Трактовать такого рода данные надо очень осторожно и применительно к конкретным маркерам и обстоятельствам.
В Вире за последние 20 лет проведены широкомасштабные исследования генофонда культурной и дикорастущей ржи по полиморфизму секалина. Наряду с идентификацией и паспортизацией мирового генофонда значительное внимание было уделено проблемам селекции. Фактически разработаны подходы к селекции ржи, сопровождаемой молекулярными маркерами [2,19,33].
Примером использования полиморфизма проламинов для сопровождения селекционного процесса является история создания сорта ржи Ильмень. Использование в селекции короткостебельных сортов донора короткостебельности ЕМ 1 для скрещивания с обычными высокорослыми сортами обычно завершается выделением и отбором короткостебельных растений. Этот процесс приводит к уменьшению уровня популяционного полиморфизма, что выражается в соответствующих характеристиках молекулярного полиморфизма [33]. Практическим следствием является снижение продуктивности, уровня адаптивности (снижается устойчивость к неблагоприятным факторам), ухудшаются другие хозяйственные признаки. Причины данных негативных явлений были объяснены на основе данных молекулярного анализа популяционного полиморфизма семейства сортов Малыш. На этом этапе селекции не удалось достигнуть оптимального уровня генетического полиморфизма, что отразилось на адаптивных свойствах популяции, а также на продуктивности сорта.
Оптимальный уровень полиморфизма был достигнут фактически менее жестким отбором после повторного скрещивания с Вяткой-2 (по данным молекулярного полиморфизма обогащение популяции проходило за счет редких генотипов). По мере возрастания внутрипопуляционно-го разнообразия увеличивалась и продуктивность у последующих вариантов сорта - Малыш 77-79 гг и особенно далее у сортов Россиянка и Ильмень.
Таким образом показано, что анализируя скрытую генетическую изменчивость можно не только контролировать состав популяций в ходе искусственного отбора, семеноводства, влияния среды и т.д., но и основываясь на основных положениях популяционной генетики вскрывать причины тех или иных явлений, ставить диагноз, указывать способы решения и предсказывать практически важные селекционные последствия для разных культур.
Белковые маркеры с успехом используются для определения гибридности семян (сортов) злаковых трав [2,19,24], свеклы [37], различных видов капусты и горчицы [20,38], подсолнечника [2,19,21], кукурузы [2,19,39] и многих других культур, а также для прогнозирования эффекта гетерозиса сорго по продуктивности [40,41].
Использование белковых маркеров в сортоиспытании. С конца 70-х годов белковые маркеры наряду с полевыми и лабораторными методами используются в системе Государственной комиссии по сортоиспытанию сельскохозяйственных культур при министерстве сельского хозяйства СССР для установления оригинальности, однородности и константности сортов пшеницы, ячменя и овса [31,42]. Следует отметить, что одновременно с методикой электрофореза белков в полиакриламидном геле, разработанной в ВИРе, для идентификации сортов пшениц применялась методика электрофореза в крахмальном геле, предложенная А.А.Созиновым и его учениками [7,8,42]. Формулы проламинов, записанные на основе анализа семян соответствующего сорта, полученного от учреждения оригинатора, были включены в Государственный реестр сортов (введен с 1993 года), допущенных к использованию в производстве [43].
С середины 80-х годов электрофорез проламинов привлекался в ряде случаев Государственной комиссией по сортоиспытанию для решения отдельных спорных вопросов, касающихся оригинальности, однородности и константности новых сортов кормовых злаковых трав - ежи сборной (Dactylis glomerata L.), райграса (Lolium L.), овсяницы луговой (Festuca pratensis L.). Метод использовался также для определения гибридной (амфидиплоидной) природы семян, при решении вопроса о соотношении гибридных и негибридных зерновок в сортовой популяции.
Использование в семеноводстве и семенном контроле. Белковые маркеры наряду с традиционной схемой (полевая апробация и др.) успешно используются для определения сортовой чистоты при семеноводстве и семенном контроле. Метод позволяет вести отбор элитных растений и потомств. Особенно эффективны белковые маркеры в последующих звеньях первичного семеноводства - питомниках испытания потомств и питомниках размножения, где обязателен контроль за появлением нетипичных для сорта растений. Нетипичные формы растений могут быть выявлены путем позернового анализа. В ряде случаев при принятой схеме элитного семеноводства может нарушаться биотипный (генотипный) состав сорта, а значит, могут измениться его характеристики. Контроль посредством электрофореза белков отдельных семян очень эффективен для решения этих практических вопросов и может резко поднять качество семеноводства и сократить сроки создания элиты с 7 до 5 лет, что продемонстрировано на многих примерах [4,19]. Наиболее наглядно это продемонстрировано на примере первичного семеноводства сорта ячменя Криничный [44]. Использование электрофореза белков в семеноводстве и семенном контроле и, в частности, для конкретных культур и групп культур описано в соответствующих методических указаниях и рекомендациях (табл.2) [20,21,37,39,44,45]. Детально эти вопросы изложены в специальной работе В.Г.Конарева[46]. Здесь же приведен полный перечень названий каталогов белковых формул, методических указаний и рекомендаций по использованию белковых маркеров, изданных в ВИРе с 1970 года (см. также табл. 2).
Список литературы
1. Конарев А.В. Всероссийский НИИ растениеводства и его вклад в развитие сельскохозяйственной науки и селекции страны. Сельскохозяйственная биология. 1994, 3: 13-75.
2. Конарев А.В. Использование молекулярных маркеров в работе с генетическими ресурсами растений. Сельскохозяйственная биология, 1998, 5: 3-25.
3. Конарев В.Г. Принцип белковых маркеров в геномном анализе и сортовой идентификации пшеницы
4. Молекулярно-биологические аспекты прикладной ботаники, генетики и селекции. Теоретические основы селекции.Том 1.(под ред. В.Г.Конарева) М., Колос, 1993, 447с.
5. Конарев В.Г. Принцип белковых маркеров в генетическом анализе исходного и селекционного материала. Физиология растений в помощь селекции. М., 1974 : 242-269
6. Конарев В.Г. Белки растений как генетические маркеры. М.: Колос, 1983, 320с.
7. Созинов А.А. Полиморфизм белков и его значение в генетике и селекции. М.: Наука, 1985.
8. Созинов А.А., Попереля Ф.А. Полиморфизм глиадина и возможности его использования. Растительные белки и их биосинтез. М.: Наука, 1975: 65-76
9. Созинов А.А.,Попереля Ф.А., Стаханова А.И. Использование электрофореза глиадинов в селекции на качество. Вестник с.-х. науки, 1974, 7: 99-108.
10. Autran J.C. and Bourdet A. L'identification des varietes de ble: etablissement d'un tableau general de determination fonde sur le diagramme electrophoretique des gliadines du grain. Ann. Amelior. Plantes, 1975,25, 3:227-301.
11. Bushuk W. and Zillman R. Wheat cultivar identification by gliadin electrophoregrams . I. Apparatus, method and nomenclature. Can. J. Plant Sci., 1978, 58: 505-515.
12. Cooke R.J. The standartizaton of electrophoresis methods for variety identification. In: Biochemical Identification of varieties (Materials III International Symposium ISTA, Leningrad, USSR, 1978), VIR, Leningrad, USSR, 1988:14-27.
13. Cooke R.J. Modern methods for cultivar verification and the transgenic plant challenge. Abstracts of 25th International Seed Testing Congress (Pretoria, April 15-24, 1998), ISTA, Zurich, 1998: 9-10.
14. International Rules for Seed Testing. Rules 1996. Verification of species and cultivar. Seed Sci.& Technol, 1996, 24 (Supplement): 253-270.
15. Конарев В.Г. Морфогенез и молекулярно-биологический анализ растений. Спб., ВИР, 1998: 370с.
16. Karp A. and Edwards К Molecular techniques in the analysis of the extent and distribution of genetic diversity. Molecular genetic techniques for plant genetic resources. Report of an IPGRI Workshop, October 1995, Rome, Italy, 1997, 11-22.
17. Molecular genetic techniques for plant genetic resources. Report of an IPGRI Workshop 9-11 October 1995 Rome, Italy. Editors: Ayard W.G., Hodgkin Т., Jaradat A., and Rao V.R. IPGRI, 1997:137p.
18. Karp.A, Kresovich S, Bhat К V. and Hodgkin T. Molecular tools in plant genetic resources conservation: a guide to the thechnologies. IPGRI technical bulletin, 1997,2: 47.
19. Molecular biological aspects of applied botany, genetics and plant breeding. Theoretical basis of plant breeding. Vol. I. St.-Petersburg, VIR, 1996: 228 p.
20. Идентификация, регистрация и оценка чистоты сортов, линий и гибридов капусты методами электрофоретического анализа изоферментов и запасных белков. Методические указания (под ред. И.П.Гаврилюк). Ленинград, ВИР, 1991 : 26с.
21. Идентификация, анализ и регистрация сортов, линий и гибридов подсолнечника методом электрофореза гелиантинина. Методические указания ( под ред. И.П.Гаврилюк). Ленинград, ВИР, 1988:23с.
22. Стрельченко П.П., Ковалева О.К, Окуно К. Оценка биологического разнообразия культурного и дикого ячменей с использованием полиморфизма амплифицированных фрагментов ДНК. Проблемы ботаники на рубеже XX-XXI веков. Тезисы докл.П(Х) съезда Русского бот. Общ-ва.. СПб, 1998, 1:380-381.
23. Strelchenko P.P., Mitrofanova O.P., Konarev A. V. and Terami F. RAPD characterization of relationships among cultivated hexaploid wheats. Abstracts submitted to XVI International Botanical Congress, August 1-7,1999, St.Louis, MO, USA.
24. Konarev A.V, Vvedenskaya I.O., Nasonova E.A. and Perchuk I.N. Use of prolamine polymorphism in studing genetic resources of forage grasses. Genetic Resources and Crop Evolution., 1995,42:197-209.
25. Конарев А.В., Гаврилюк И.П., Мигушова Э.Ф. Дифференциация диплоидных пшениц по данным иммунохимического анализа. Докл. ВАСХНИЛ, 1974, 6:12.
26. . Дорофеев В.Ф., Удачин Р.А., Семенова Л.В. и др. Пшеницы мира. Агропромиздат, Ленингр. отд., 1987: 560с.
27. Chapman V., Miller Т. andRiley R. Equivalence of the A-genome of bread wheat and that of Triticum urartu. Genetic Resources, 1976, 27, 1: 69-76.
28. Dvorak J., McGuire P. and Cassidy R. Apparent sources of the A genome of wheat inferred from polymorphism in abundance and and restriction fragment length of repeated nucleotide sequences. Genome, 1988, 30: 680-689.
29. Potokina E., Tomooka N., Dunkan A. Vaughan, Alexandrova T. & Ru-QiangXu. Phylogeny of Vicia subgenus Vicia (Fabaceae) based on analysis of RAPDs and RFLP of PCA-amplified chloroplast genes. Genetic resources and crop evolution. 1998, 3: 1-13.
30. Перчук И.Н., Лоскутов И.Г., Окуно К, Эвана К. RAPD-анализ в изучении межвидового полиморфизма в роде Avena L. В материалах IV Совещания по кариологии и кариосистематике растений (Спб, 25-27 мая 1999г).
31. Алтухов Ю.П. Генетические процессы в популяциях. М.: Наука, 1988, 328с.
32. Marshall D. and Brown A. Optimum sampling strategies in genetic conservation. In: Genetic resources for today and tomorrow. Cambridge University Press, Cambridge, UK, 1975.
33. Пенева Т.И., Конарев B.F., Кобылянский В.Д., Лапиков КС Анализ полиморфизма по спектрам секалина в процессе становления сорта озимой ржи Ильмень. Сельскохозяйственная биология, 1998,1 : 55-62
34. Vvedenskaja I. O., Alpatyeva N. V., Gubareva N.K. and Konarev A. V. Use of storage protein electrophoresis in the analysis of genetic resources of some cereals. Erhaltung and nutzung pflanzengenetischer ressourcen - eine internationale aufgabe fur naturschutzer, genbanken und pflanzenzuchter. Vortrage fur pflanzenzuchtung, 1993, 25: 187-201.
35. Алпатьева Н.В., Губарева H.K. Изучение динамики генотипного состава стародавних сортов озимой мягкой пшеницы по белкам зерна в разных условиях хранения и репродукции образцов. В тезисах международной конференции: «Интродукция и отдаленная гибридизация растений». Москва, ГБС, РАН, 1998 : 24-26.
36. Идентификация отечественных сортов озимой мягкой пшеницы по электрофорети-ческим спектрам глиадина (под ред. В.Г.Конарева). Каталог мировой коллекции ВИР. Ленинград, ВИР, 1983. Вып.386 : 57с.
37. Применение белковых маркеров для идентификации селекционных материалов сахарной свеклы. Методические указания (под ред. В.Г.Конарева). Ленинград, ВИР, 1991: 17с.
35. Фарбер СП., Артемьева A.M. Полиморфизм круциферина семян видов рода Brassica L. Сельскохозяйственная биология, 2000 (в печати).
Рекомендуем скачать другие рефераты по теме: курсовая работа по менеджменту, реферат.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата