Проблема абстракции в математике
Категория реферата: Рефераты по философии
Теги реферата: сочинения по литературе, реферат субъекты
Добавил(а) на сайт: Кабалкин.
1 2 3 4 | Следующая страница реферата
"Проблема абстракции в математике"
Министерство образования Российской федерации
Челябинский государственный университет
Кафедра философии
С А M
Проблема абстракции в математике.
Челябинск
2001
Содержание.
Введение. 3
1. Особенность математической абстракции. 6
2. Абстракция актуальной бесконечности. 11
3. Абстракция потенциальной бесконечности. 17
Заключение. 22
Список литературы. 24
Введение.
При изучении математики, как и любой другой науки, исследователь прежде
всего сталкивается с вопросом о реальном содержании ее понятий и теорий.
Чтобы понять, что соответствует математическому знанию в реальном мире, или, иначе говоря, каков тот специфический объект, который служит предметом
исследования математики, надо понять, какую сторону действительности
отображает математика, как совершается процесс абстрагирования в этой науке
и чем он отличается от абстрагирования в естествознании и других опытных
науках.
Что же такое абстракция?
В самом широком смысле слова абстракция означает возможность рассмотрения предметов и процессов с какой-либо одной точки зрения и отвлечения от других сторон, моментов и обстоятельств. В окружающем мире все предметы и явления находятся в различных взаимосвязях и отношениях друг с другом. Одни из них имеют существенный, устойчивый характер, другие – несущественный, случайный. Чтобы понять сущность явлений объективного мира, законы, которые управляют ими, необходимо отделить существенные связи от несущественных, отвлечься от второстепенных обстоятельств, в чем и состоит процесс абстрагирования.
Отвлечение тех или иных свойств вещей и наделение вещей свойствами, которые в определенной степени огрубляют их природные свойства, дает возможность лучше изучить эти свойства и отношения, а через них и сами вещи. Так, например, замена реальных тел в механике абсолютными твердыми телами, а в иных случаях даже материальными точками помогает глубже изучить процессы, связанные с механическим движением. Точно так же рассмотрение количественных отношений и пространственных форм обособленно от качественной природы предметов является весьма плодотворным приемом, с помощью которого математике удается глубоко проникнуть в сущность количественных и пространственных отношений действительности.
В эмпирической теории абстракции, свойства, которые являются общими для
различных вещей, обнаруживаются в процессе созерцания. Они имеют опытный
эмпирический характер. Соответственно этому предикаты, которые их выражают, называются эмпирическими. Более сложный характер носят так называемые
диспозиционные предикаты, в которых отображается эмпирическое в
определенных условиях его проявления. Такие свойства, как «быть проводником
тока», «разлагаться на составные элементы» и т. п., проявляются лишь при
наличии определенных условий. И в реальных ситуациях обычно такие условия
точно фиксируются. По существу уже свойства, выражаемые с помощью
эмпирических предикатов, всегда предполагают наличие определенных условий.
Такое свойство тела, как теплопроводность, проявляется лишь при
определенном взаимодействии с другими телами. Но от этого в повседневной
практике отвлекаются и рассматривают его изолированно, как свойство данного
тела. Наконец, абстрактные предикаты отображают более существенные и
глубокие свойства, чем диспозиционные и эмпирические. Именно с такими
предикатами и имеет дело математика. Часто такой предикат рассматривают как
некоторый самостоятельный объект. Чтобы отличить его от реальных объектов, его называют абстрактным объектом. Понятно, что такие объекты или свойства
нельзя воспринимать чувственно, но они приписываются вещам на основании
определенных теоретических допущений.
В результате процесса абстракции возникают понятия, категории, законы, в которых как раз и отображаются существенные стороны реальной действительности. Являясь отвлечениями от определенных сторон вещей и явлений, научные абстракции воспроизводят действительность в обобщенном виде. Ясно, что отражая реальный мир абстракция воспроизводит его не непосредственно, а опосредованно чувственным познанием. Но на этом процесс познания не заканчивается, наоборот, абстракции служат лишь исходным пунктом для дальнейшего процесса восхождения от абстрактного знания к конкретному.
Рассмотрим те особенности, которые характерны для процесса абстрагирования в математике.
1. Особенность математической абстракции.
Специфика предмета математики обусловливает ряд важных особенностей математической абстракции. Обратим внимание на такие ее особенности, которыми она отличается прежде всего от абстракции в естествознании и опытных науках вообще.
Рекомендуем скачать другие рефераты по теме: баллов, решебник.
1 2 3 4 | Следующая страница реферата