Концепция современного естествознания
Категория реферата: Рефераты по физике
Теги реферата: список литературы реферат, ответы 2011
Добавил(а) на сайт: Polovov.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата
18.3 Волновые явления: поляризация, интерференция, дифракция и дисперсия.
Распространение волн в пространстве и их взаимодействие со средой приводит к появлению целого класса явлений, которых нет при механическом движении тел. Рассмотрим основные из них для звуковых и электромагнитных волн.
В поперечных волнах (к которым относятся электромагнитные) колебания происходят перпендикулярно направлению распространения волны. Эти колебания могут быть как упорядоченными, так и неупорядоченными. Например, колебания могут происходить только в одном выделенном направлении.
Волны, у которых колебания совершаются в одной плоскости, называются плоско поляризованными.
В каждой точке пространства волна представляет собой колебание с определенной начальной фазой. Два колебания в выбранной точке пространства складываются друг с другом.
Ограничимся случаем, когда складываются волны с одинаковыми частотами. Если складываются два колебания в одинаковой фазе, то амплитуда результирующего колебания максимальна и равна сумме амплитуд. Если же складываются два колебания в противофазе, то результирующая амплитуда будет минимальна и равна модулю разности амплитуд этих колебаний. При произвольной разности фаз складывающихся колебаний амплитуда результирующего колебания может меняться от нуля до максимума.
Если, например, складываются два колебания с одинаковыми амплитудами и одинаковыми фазами, то результирующая амплитуда удвоится, а интенсивность возрастет в четыре раза. Если же колебания с равными амплитудами сложатся в противофазе, то колебания полностью погасят друг друга, и интенсивность результирующего колебания окажется равной нулю. Интенсивность двух складывающихся волн не равна сумме их интенсивностей.
Явление стационарного во времени увеличения интенсивности волн в одних точках пространства и уменьшения в других называется интерференцией. Еще раз подчеркнем, что для наблюдения интерференции необходимо, чтобы частоты колебаний были одинаковыми. Такие волны называются когерентными.
Наряду с плоскими волнами, которые мы рассматривали до сих пор, существуют и другие типы волн, например, сферические или цилиндрические. Напомним, что тип волны или форма волновой поверхности определяется формой источника и законом его колебания. Сферический источник, как правило, создает сферические волны. Такие волны не имеют выделенного направления и распространяются во всех направлениях одинаково.
Если в среде нет неконсервативных сил, то амплитуда колебаний таких волн убывает обратно пропорционально расстоянию, а интенсивность, соответственно, обратно пропорционально квадрату расстояния.
Введение сферических волн необходимо для понимания еще одного чисто волнового явления - дифракции. Под дифракцией понимают огибание волнами препятствия и их захождение в область геометрической тени. Представим себе следующую ситуацию. У нас есть закрытая комната в одной из стен которой есть окно. Напротив стены с окном стоит стрелок и стреляет в него. Естественно, если пули не рикошетят, все они попадут в стенку за окном и никогда не достигнут боковых стен. Если мы рассматриваем движение материальных тел, то эти тела (в отсутствие силовых воздействий) в соответствии с первым законом Ньютона двигаются прямолинейно. Если на их пути встречаются препятствия, тела не огибают их.
По иному ведут себя волны. Волна есть процесс распространения колебаний в пространстве. Если в какой-то точке упругой среды возникнут колебания, то они за счет упругости среды передадутся в окрестные точки, т.е. возникнет сферическая волна. Как будет распространяться в пространстве волна с произвольным фронтом? Ответ на этот вопрос дал в 17-м веке Х.Гюйгенс (1629-1695), сформулировав принцип, названный его именем. Гюйгенс предложил считать каждую точку фронта волны источником сферических волн. За время [pic]t сферические волны распространятся на некоторое расстояние. Новым фронтом волны через время [pic]t будет огибающая этих сферических фронтов.
Рассмотрим два примера, иллюстрирующих принцип Гюйгенса.
На рис.18.5 показано прохождение плоской волны через отверстие небольшого размера, соизмеримого с длиной волны. Слева на отверстие падает плоская волна. Какой она станет после прохождения отверстия? Разобьем отверстие на зоны размерами порядка длины волны. Каждая такая зона может рассматриваться как источник сферических волн. Пусть за время [pic]t сферическая волна распространится на расстояние [pic]r, как это показано на рисунке. Огибающая сферических волн уже не будет плоской волной. Продолжим этот процесс. Если взять достаточно большой промежуток времени t, т.е. рассматривать волновые поверхности на большом по сравнению с размерами отверстия расстоянии, то прошедшая через него плоская волна превратится в сферическую волну. Волна за отверстием будет распространятся во все стороны, в том числе и в область геометрической тени.
Рис.18.5
Рассмотрим другой пример, иллюстрирующий принцип Гюйгенса.
Пусть плоская волна падает на границу раздела сред (1) и (2), как это показано на рис.18.6. Угол падения обозначим через (1.
Скорость распространения волны в первой среде равна (1, во второй (2. Найдем, под каким углом (2 будет распространятся волна во второй среде.
В соответствии с принципом Гюйгенса каждую точку на границе двух сред мы можем считать источником вторичных сферических волн. Система симметрична и нам достаточно взять две точки А и В, которые ограничивают фронт падающей волны.
Проведем из точки А прямую, перпендикулярную направлению распространения фронта волны AC. Эта прямая совпадает с фронтом волны в момент времени t.
V
V В
С
D
А
Рекомендуем скачать другие рефераты по теме: сообщение, физика и техника.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата