Концепция современного естествознания
Категория реферата: Рефераты по физике
Теги реферата: список литературы реферат, ответы 2011
Добавил(а) на сайт: Polovov.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Здесь интегрирование берется по контуру, по которому течет ток.
В соответствии с определением ЭДС (15.14.), ЭДС Е равна:
E = A/q0 = Ест dr .
Другими словами, ЭДС равна циркуляции вектора напряженности электрического поля сторонних сил. В отличие от электростатического поля, она не равна нулю на замкнутом контуре, а равна ЭДС, действующей на данном контуре. Поскольку циркуляция вектора напряженности электростатического поля равна нулю, добавления 0 в дальнейшем мы не бу
Мы увидели, что работа, совершаемая электрическим полем не равна нулю на замкнутом контуре, если в нем действуют сторонние силы, задающие ЭДС. Таким образом , электрические поля сторонних сил, которые являются вихревыми полями - неконсервативные поля.
То же самое можно сказать и о магнитных полях. Если расположить провод с током в магнитном поле так, чтобы сила, действующая на него со стороны магнитного поля совпадала бы с направлением перемещения, то работа по перемещению такого проводника, совершалась бы неконсервативными силами.
Вихревые электрические поля могут реализовываться за счет других полей - магнитных. Английский ученый М.Фарадей в 1831 году и независимо от него американский ученый Дж.Генри в 1832 году открыли закон электромагнитной индукции. Сейчас его называют законом электромагнитной индукции Фарадея.
Сформулируем его в том виде, который нам удобен в дальнейшем.
Если менять поток индукции магнитного поля ФН, проходящего через проводник, то в проводнике возникает ЭДС, которую принято называть ЭДС индукции. Математическая формулировка его такова:
E = - m0 dФН / dt = Edr = - m0 dФН / dt
(15.15)
ЭДС самоиндукции пропорциональна скорости изменения потока индукции магнитного поля, взятой с обратным знаком. С другой стороны, ЭДС равна циркуляции вектора напряженности электрического поля и мы можем написать: E= Edr = - m0dФН / dt. Эта форма записи закона электромагнитной индукции Фарадея была введена Д.К. Максвеллом и входит в систему уравнений
Максвелла, описывающих электромагнитные поля.
Закон электромагнитной индукции не говорит о том, за счет чего меняется поток индукции магнитного поля. Он может менятся как за счет величины магнитного поля, так и за счет изменения площадки, через которую проходит магнитный поток.
Поясним вышесказанное примерами. На рис.15.6 нарисован виток провода, помещенный в магнитное поле . Виток присоединен к токосъемникам. Если мы будем вращать виток, то в зависимости от его положения, поток индукции магнитного поля будет меняться и в нем генерируется ЭДС. Эта ЭДС снимается с токосъемников и мы получаем генератор переменного тока.
Второй пример. Пусть мы имеем в пространстве переменное магнитное поле H=H0coswt. Это поле генерирует вокруг себя переменное электрическое поле E =E0 coswt. Переменное электрическое поле также вихревое. Его силовые линии образуют кольца, как это показано на рис.15.7. В свою очередь, как мы рассмотрим несколько позднее, переменное электрическое поле генерирует переменное же магнитное поле и эта цепочка продолжается в пространстве. Образуется новый вид поля- электромагнитное поле, которое распространяется в пространстве как электромагнитные волны.
Рис.15.6 Рис.15.7
В заключении этого раздела рассмотрим систему уравнений
Максвелла, которая описывает единым образом все электрические и магнитные явления. Эта система была получена Д.К. Максвеллом в 60 годах прошлого столетия на основе обобщения эмпирических законов электрических и магнитных явлений и идей М.Фарадея, что взаимодействие между зарядами осуществляется посредством электромагнитных полей. Фактически мы уже рассмотрели большую часть уравнений.
Первыми двумя уравнениями являются рассмотренные нами уравнения о потоках индукции электрического и магнитного поля.
Поток индукции электрического поля через замкнутую поверхность равен заряду внутри этой поверхности , деленному на диэлектрическую постоянную вакуума. Поток индукции магнитного поля через замкнутую поверхность равен нулю. Эти уравнения были обобщены Д.Максвеллом на случай переменных полей. Т.е. они справедливы и могут быть применены как к постоянным, так и к переменным поля. Физический смысл этих уравнений достаточно нагляден. Электрические поля могут начинаться и заканчиваться только на зарядах. Электрическое поле может быть центральным и вихревым. Магнитные поля всегда начинаются и заканчиваются сами на себе. Они всегда вихревые.
Третье уравнение Максвелла - обобщение закона электромагнитной индукции Фарадея. Оно связывает магнитное и электрическое поле. Его следствием является возникновение вихревого переменного электрического поля при наличие меняющегося потока индукции магнитного поля.
Четвертое уравнение Максвелла базируется на рассмотренной нами теореме о циркуляции вектора напряженности магнитного поля: циркуляция вектора напряженности магнитного поля по замкнутому контуру равна току (току проводимости), проходящему через этот контур. Теорема справедлива как для постоянных, так и для переменных магнитных полей. Однако, в случае переменных магнитных полей , Максвелл ввел наряду с током проводимости ток смещения. Ток смещения пропорционален скорости изменения потока индукции электрического поля. Фактически это означает, что , если имеется переменное электрическое поле, то оно генерирует переменное магнитное поле. Те самым третье и четвертое уравнения Максвелла связывают между собой переменные электрические и магнитные поля.
Система уравнений Максвелла лежит в основе ряда разделов физики. В первую очередь - классической электродинамики.
Электродинамика описывает поведение и взаимодействие постоянных и переменных токов и зарядов, распространение полей
Рекомендуем скачать другие рефераты по теме: сообщение, физика и техника.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата