Магнетронные распылительные системы
Категория реферата: Рефераты по физике
Теги реферата: решебники скачать бесплатно, реферат на тему ресурсы
Добавил(а) на сайт: Новомейский.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Рисунок 3.1 – Конструктивные схемы магнетронных систем распыления:
1– катод-мишень; 2 – анод; 3 – подложкодержатель; 4 – магнитная система; 5
– экран; 6 – зона распыления. (Стрелками показано напраление силовых линий
магнитного поля.)
Подложки располагаются вокруг катода (при внешнем распылении) или внутри
вдоль его оси (при внутреннем распылении), причем в последнем случае
достигается более высокий коэффициент использования материала мишени. Для
приведенных систем характерны плотности тока 600 А/см2 и достаточно высокая
равномерность наносимых покрытий [1, 3].
На рисунке 3.1 д показана магнетронная система, состоящая из
полусферического вогнутого катода, дискового подложкодержателя под ним, кольцевого анода, а также двух электромагнитных катушек, создающих
квадрупольное магнитное поле в области разряда. При зажигании разряда перед
катодом образуется кольцеобразная область, в которой магнитное и
электрическое поля пересекаются под прямым углом. В этой области наиболее
высокая степень ионизации атомов рабочего газа, вследствие чего катод на
кольцевом участке между экватором и полюсом интенсивно распыляется. Таким
образом, описанная МРС имитирует кольцевой источник распыляемого материала.
При использовании медного катода параметры разряда критичны к колебаниям
давления, величине и геометрии магнитного поля и меняются и меняются при
увеличении температуры катода во время распыления [3]. Поэтому, не смотря
на хорошую адгезию медных пленок к стеклянным подложкам, большую скорость
осаждения (до 17 нм/с) и довольно высокую равномерность распределения
пленки по толщине (96 – 97 %), применение этой МРС ограничено из-за
невысокой стабильности и воспроизводимости параметров разряда, а также
сложности выполнения полусферического катода.
На рисунке 3.1, е приведена конструкция с цилиндрическим полым катодом [3]. Магнетронная система распыления выполнена в виде автономного источника распыляемого материала, который может быть пристыкован к любой вакуумной камере, причем в вакууме находятся только катодный и анодный блоки, а вся остальная часть источника, в том числе и магнитная система, располагается вне камеры. Исследования показали, что данная конструкция системы имеет ряд недостатков: значительная часть распыляемого материала перераспределяется внутри источника и не попадает на подложки; высокая неравномерность распределения конденстанта по толщине не позволяет осаждать пленки на большие площади без использования планетарных механизмов вращения подложек; недостаточна эффективна магнитная система, которая не обеспечивает в полной мере защиту подложек от бомбардировки заряженными частицами.
Магнетронная система с коническим катодом обеспечивает более полное использование распыляемого материала (смотри рисунок 3.1, ж ). Кроме того, магнитная система дает возможность сконцентрировать магнитное поле у распыляемой поверхности мишени, что позволяет вдвое увеличить плотность тока на катоде и достигнуть более высоких скоростей осаждения. Однако размещение магнитной системы внутри вакуумной камеры вносит дополнительные загрязнения в рабочий объем установки. Хотя в системе с коническим катодом достигается более равномерное нанесение пленок, для увеличения площади одновременно обрабатываемых подложек с высокой равномерностью распределения конденсата по толщине также необходимо использовать планетарные внутрикамерные устройства.
Дальнейшее развитие магнетронных распылителей привело к созданию
планетарных систем (сотри рисунок 3.1, з), в которых эффект экранирования
потока распыленных атомов полностью устранен. Магнитная система монтируется
в водоохлаждаемом держателе и не вносит загрязнений в рабочую камеру.
Планетарные магнетронные системы позволяют создать еще более высокие
плотности тока и достичь скоростей осаждения, сравнимых со скоростями, характерных для метода термического испарения в высоком вакууме. В то же
время недостатком такой системы является то, что распылению подвергается
узкая кольцеобразная область мишени и коэффициент использования составляет
26% объема мишени.
В настоящее время известно множество конструктивных вариантов
магнетронных распылительных систем [1, 2, 3], но наибольшее распространение
в промышленности получили системы с мишенями конической и плоской форм.
Конструкции магнетронных систем должны обеспечивать высокую скорость
распыления, минимальное отрицательное воздействие на обрабатываемые
структуры, высокий коэффициент использования материала мишени, возможность
распыления разнообразных материалов, нанесение пленочных покрытий на
большие площади с минимальной неравномерностью по толщине, высокую
надежность работы, большой срок службы и другие. Большинство из этих
требований удовлетворяется правильным выбором конструкции магнетронной и
формы мишени.
Магнитная система, являющаяся одним из конструктивных элементов магнетронной системы, должна формировать у поверхности мишени поле заданной конфигурации и величины с минимальным рассеянием для создания эффективной магнитной ловушки для электронов. Исследования по макетированию магнитных полей позволили выявить наиболее целесообразные варианты конструкции магнитной системы с точки зрения простоты и возможности получения магнитного поля требуемой геометрии и величины.
Магнитная система, изображенная на рисунке 3.2, а, является
достаточно простой и обеспечивает эффективную локализацию плазмы. В этой
конструкции можно использовать наборные магнитные блоки, перекрывая их
сверху общим полюсным наконечником. Более эффективно сконцентрировать поле
в рабочем зазоре с минимальными потерями позволяет магнитная система, приведенная на рисунке 3.2, б. Однако она представляет собой магнит
специфической формы и требует специального изготовления. Аналогичный эффект
достигается при использовании магнитов подковообразной формы (рисунок 3.2, в). Магнитную систему можно сделать более компактной, если использовать
кольцевые магниты с радиальным намагничиванием (рисунок 3.2, г), но
изготовление таких магнитов достаточно сложно. Кроме того, приведенная
конструкция характеризуется значительным рассеянием магнитного поля снизу
катодного блока. Форму магнитного поля можно изменять, используя полюсные
наконечники определенной геометрии. Для создания в прикатодной области
сильного магнитного поля, силовые линии которого почти параллельны
распыляемой поверхности (что необходимо для более равномерного распыления
поверхности мишени), можно использовать магнитную систему, показанную на
рисунке 3.2, д. Однако в такой конструкции при сильно развитых наконечниках
индукция магнитного поля резко уменьшается с увеличением расстояния от
мишени, поэтому эффективное
[pic]
Рисунок 3.2 – Конструкции магнитных систем магнетронных распылителей
распыление достигается только для достаточно тонких мишеней. В случае толстых мишеней не следует сильно увеличивать площадь полюсных наконечников. Максимальная степень локализации плазмы характеризует магнитную систему, изображенную на рисунке 3.2, е. Несмотря на некоторую сложность изготовления, она является одной из самых эффективных. Для магнетронных распылительных систем с конической мишенью обычно используется магнитная система, приведенная на рисунке 3.2, ж. Она хотя и недостаточно эффективна, поскольку поле рассеивается по периметру системы, но проста в изготовлении. На рисунке 3.2, з показана аналогичная система с использованием радиальных магнитов. Наибольшая эффективность достигается в системе, в которой рассеяние поля отсутствует (смотри рисунок 3.2, и), однако она требует изготовления магнита специальной формы.
Форма мишени обусловливается видом распыляемого материала и
геометрией магнитной системы. Мишень должна обеспечивать высокий
коэффициент использования ее материала (что особенно важно, поскольку
распыление мишени не равномерно, стоимость мишени высока), хороший
электрический и тепловой контакты с водоохлаждаемым держателем, удобство
замены, минимальное экранирование магнитного поля. На рисунке 3.3 показаны
некоторые конструктивные варианты конических мишеней. Обычная коническая
мишень (смотри рисунок 3.3, а) проста в изготовлении, ее форма удобна для
нанесения на нее слоя толщиной до 2,5 мм при исследовании процесса
распыления дорогостоящих материалов, она равномерно прогревается, что
исключает расплавление поверхности при распылении легкоплавких материалов.
Однако рабочее давление при такой мишени достаточно высокое (1 Па), а
главное, по мере ее распыления сильно меняются
[pic]
Рисунок 3.3 – Формы конических мишеней (а - г) и плоских мишеней (д - з)
электрические характеристики разряда, что не обеспечивает воспроизводимости
параметров процесса осаждения пленки. При использовании мишени, показанной
на рисунке 3.3, б, эти недостатки устраняются. Однако, образующаяся по мере
распыления глубокая и достаточно узкая выемка, уменьшает срок службы мишени
и коэффициент полезного использования распыляемого материала. Мишень на
рисунке 3.3, в наиболее пригодна для промышленного применения и
обеспечивает максимальное использование распыляемого материала, причем за
весь срок службы мишени характеристики процесса остаются неизменными, что
позволяет его полностью автоматизировать. Правда, эта мишень сложна в
изготовлении. На рисунке 3.3, г показана мишень для распыления магнитных
материалов. Боковая стенка мишени тонкая (до 1,5 мм), и магнитное поле
проникает через нее, окружая нижнюю распыляемую часть воспроизводимости
мишени, толщина которой во избежание экранирования не должна превышать 5
мм. Такую мишень можно сделать составной из тонкостенного кольца и диска.
Рабочее давление 0,5 Па, напряжение 500 В, ток 8 А.
Следует отметить, что конические мишени не требуют специального крепления, поскольку они самоуплотняются в водоохлаждаемом держателе вследствие их расширения при нагревании, обеспечивая в дальнейшем надежный тепловой и электрический контакты, что особенно важно при распылении легкоплавких материалов. При разработке магнетронных систем с плоскими мишенями наиболее остро встает проблема их охлаждения. Значительные плотности тока на распыляемой поверхности приводят к неравномерному разогреву мишени, что приводит к ее короблению, а в местах плохого контакта с держателем – к ее расплавлению. При этом традиционный метод крепления винтами не эффективен. Больший эффект дает приклеивание мишени к держателю с помощью специальных поводящих клеев, однако наличие локальных областей перегрева при недостаточном охлаждении может вызвать сильное газовыделение и разрушение клеевого слоя. Надежным и эффективным способом крепления мишеней является пайка с помощью припоев на основе олова, индия или их сплавов. В то же время крепление мишеней с помощью клеев и припоев затрудняет замену мишеней, а сами клеи и припои могут влиять на состав газовой среды вакуумного рабочего объема. Поэтому чаще предпочтение отдается тем формам мишени, которые обеспечивают надежный тепловой контакт с водоохлаждаемым держателем и легко снимаются.
В последнее время эта проблема решена и для плоских мишеней, конструктивные варианты которых приведены на рисунках 3.3 д - з. В отличие
от традиционной плоской формы (рисунок 3.3, д), мишень выполняется с
утолщением в области зоны эрозии (рисунок 3.3, е) а в держателе делается
канавка аналогичной формы. Такая мишень в процессе распыления обеспечивает
хороший тепловой контакт за счет ее термического расширения. Помимо
хорошего охлаждения при этом достигается и более высокий коэффициент
использования распыляемого материала по сравнению с равнотолщинной мишенью.
Еще выше этот эффект для мишеней, показанных на рисунках 3.3, ж и з (до 70%
и 90% соответственно).
Типичные конструкции магнетронных распылительных систем с плоскими мишенями приведены на рисунке 3.4. В простейшем случае (рисунок 3.4, а) система включает в себя магнитный блок, вмонтированный в водоохлаждаемый корпус, являющийся одновременно и держателем мишени. Вокруг корпуса располагается анод в виде цилиндра или медной трубки с проточной водой, установленный по периметру мишени вблизи ее. Анод обычно заземляется. Для более полного устранения бомбардировки подложек вторичными электронами катодный блок окружается заземленным экраном, а по периметру мишени и в центре устанавливаются изолированные аноды, имеющие небольшой (50 В) положительный потенциал относительно земли. Аноды перекрывают места входа и выхода силовых линий магнитного поля и улавливают рассеиваемые вдоль силовых линий вторичные электроны, оставляя открытой только ту область мишени, где силовые линии параллельны распыляемой поверхности и скорость распыления максимальна (рисунок 3.4, б). Экранирование слабо распыляемых участков мишени улучшает свойства получаемых пленок [1, 3, 4]. При изготовлении чувствительных к радиационным воздействиям приборов целесообразно дополнительно улавливать летящие в сторону подложки ионы, которые, например, могут образоваться в результате ионизации распыленных атомов мишени. В этом
[pic]
Рисунок 3.4 – Конструкции магнетронных распылительных систем с плоскими мишенями: 1 – мишень; 2 – анод; 3 – магнитная система; 4 – дополнительный электрод; 5 – полюсные наконечники
случае над поверхностью положительного анода устанавливается дополнительный отрицательный электрод (рис. 3.4, в). На рисунке 3.4, г представлена конструкция магнетронной распылительной системы, использующей мишень специальной формы — четыре составные части из стержней с заданным профилем сечения, расположенных вдоль прямоугольной зоны распыления. Каждая часть крепится к центру и по периметру брусками из магнитного материала, которые являются в данном случае полюсными наконечниками, выводящими силовые линии магнитного поля от полюсов магнитной системы на поверхность мишени. Это позволяет распылять достаточно толстые мишени [3, 4]. После распыления половины материала мишени она переворачивается и производится распыление остальной части, что обеспечивает повышение коэффициента использования материала мишени до 90%.
Типичная конструкция магнетронной распылительной системы с конической
мишенью показана на рисунке 3.5, а. Магнитная система с держателем и
мишенью помещается в заземленный корпус, который играет роль
дополнительного анода. Основной анод располагается в центре, и на него
может быть подано положительное смещение. Недостатком такой магнетронной
системы является сложность изготовления магнитной системы, обеспечивающей
фокусировку силовых линий магнитного поля между полюсными наконечниками.
Обычно наблюдаются искажение и рассеяние силовых линий у верхнего внешнего
полюсного наконечника, что затрудняет локализацию плазмы в центральной
наиболее толстой части мишени.
[pic]
Рисунок 3.5 – Конструкции магнетронных распылительных систем с конической мишенью: 1 – мишень; 2 – анод; 3 – магнитная систенма; 4 – водоохлаждаемый держатель; 5 – экран; 6 – дополнительный магнит
Положительного результата можно достигнуть, используя дополнительную магнитную систему, расположенную над верхним полюсным наконечником непосредственно под дополнительным анодом (рисунок 3.5, б).
Для магнитной системы могут быть использованы электромагниты, однако это влечет за собой увеличение габаритов, необходимость стабилизированного электропитания постоянным током и электрической изоляции в условиях интенсивного водяного охлаждения. Поэтому в промышленных условиях целесообразно применять постоянные магниты, а электромагниты — при экспериментальных исследованиях для выбора оптимальной величины магнитного поля применительно к конкретным условиям и конструкции магнетронной распылительной системы.
Рекомендуем скачать другие рефераты по теме: купить дипломную работу, написание дипломной работы.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата