Двоичные деревья поиска
Категория реферата: Рефераты по информатике, программированию
Теги реферата: отчет о прохождении практики, шпоры на экзамен
Добавил(а) на сайт: Dvoreckov.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Двоичные деревья поиска
Роман Акопов
Определение Двоичного Дерева Поиска (Binary Search Tree, BST)
Двоичным деревом поиска (ДДП) называют дерево, все вершины которого упорядочены, каждая вершина имеет не более двух потомков (назовём их левым и правым), и все вершины, кроме корня, имеют родителя. Вершины, не имеющие потомков, называются листами. Подразумевается, что каждой вершине соответствует элемент или несколько элементов, имеющие некие ключевые значения, в дальнейшем именуемые просто ключами. Обычно одной вершине соответствует один элемент, поэтому данные термины можно без потери смысла считать синонимами, хотя и надо помнить, что в некоторых реализациях это не так. В приведённых алгоритмах считается, что одной вершине соответствует только один элемент. Поэтому мы будем использовать понятия ключа вершины и данных вершины, подразумевая ключ и данные соответствующего вершине элемента. Мы так же будем понимать под вставкой вершины добавление вершины с указанным значением элемента и присвоение указателям на родителя и потомков корректных значений. Именно ключ используется во всех операциях сравнения элементов. Элемент может также содержать ассоциированные с ключом данные. На практике в качестве ключа может использоваться часть данных элемента. Ключ также может храниться как отдельное значение. ДДП позволяет выполнять следующие основные операции:
Поиск вершины по ключу.
Определение вершин с минимальным и максимальным значением ключа.
Переход к предыдущей или последующей вершине, в порядке, определяемом ключами.
Вставка вершины.
Удаление вершины.
Двоичное дерево может быть логически разбито на уровни. Корень дерева является нулевым уровнем, потомки корня – первым уровнем, их потомки – вторым, и т.д. Глубина дерева это его максимальный уровень. Понятие глубины также может быть описано в терминах пути, то есть глубина дерева есть длина самого длинного пути от корня до листа, если следовать от родительской вершины до потомка. Каждую вершину дерева можно рассматривать как корень поддерева, которое определяется данной вершиной и всеми потомками этой вершины, как прямыми, так и косвенными. Поэтому о дереве можно говорить как о рекурсивной структуре. Эффективность поиска по дереву напрямую связана с его сбалансированностью, то есть с максимальной разницей между глубиной левого и правого поддерева среди всех вершин. Имеется два крайних случая – сбалансированное бинарное дерево (где каждый уровень имеет полный набор вершин) и вырожденное дерево, где на каждый уровень приходится по одной вершине. Вырожденное дерево эквивалентно связанному списку. Время выполнения всех основных операций пропорционально глубине дерева. Таким образом, скоростные характеристики поиска в ДДП могут варьироваться от O(log2N) в случае законченного дерева до O(N) – в случае вырожденного.
ДДП может быть использовано для реализации таких абстракций, как сортированный список, словарь (набор соответствий "ключ-значение"), очередь с приоритетами и так далее.
При реализации дерева помимо значения ключа (key) и данных также хранятся три указателя: на родителя (net), левого (left) и правого (right) потомков. Если родителя или потомка нет, то указатель хранит нулевое (NULL, NIL) значение.
Свойство упорядоченности двоичного дерева поиска
Если x – это произвольная вершина в ДДП, а вершина y находится в левом поддереве вершины x, то y.key <= x.key. Если x – это произвольная вершина ДДП, а вершина y находится в правом поддереве вершины x, то y.key >= x.key. Из свойства следует, что если y.key == x.key, то вершина y может находиться как в левом, так и в правом поддереве относительно вершины x.
Необходимо помнить, что при наличии нескольких вершин с одинаковыми значениями ключа некоторые алгоритмы не будут работать правильно. Например, алгоритм поиска будет всегда возвращать указатель только на одну вершину. Эту проблему можно решить, храня элементы с одинаковыми ключами в одной и той же вершине в виде списка. В таком случае мы будем хранить в одной вершине несколько элементов, но данный случай в статье не рассматривается.
Это двоичное дерево поиска:
Рисунок 1.
А это нет:
Рисунок 2.
Способы обхода ДДП
Есть три способа обхода: Прямой (preorder), Поперечный (inorder), Обратный (postorder).
Прямой обход: сначала обходится данная вершина, левое поддерево данной вершины, затем правое поддерево данной вершины.
Поперечный обход: сначала обходится левое поддерево данной вершины, затем данная вершина, затем правое поддерево данной вершины. Вершины при этом будут следовать в неубывающем (по ключам key) порядке.
Обратный обход: сначала обходится левое поддерево данной вершины, затем правое, затем данная вершина.
На рисунке 3 порядок обхода вершин указан номерами, при этом предполагается, что сами вершины расположены так, что образуют ДДП.
Рисунок 3.
Рекомендуем скачать другие рефераты по теме: шпаргалки по математике, шпаргалки по гражданскому.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата