Решение дифференциального уравнения с последующей аппроксимацией
Категория реферата: Рефераты по информатике, программированию
Теги реферата: курсовик, игра реферат
Добавил(а) на сайт: Бутылин.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Первое уравнение считается основным, его мы не изменяем. Второе уравнение
нужно преобразовать так, чтобы первый его коэффициент стал равен нулю. Для
этого второе уравнение нужно умножить на такой множитель, чтобы первые
коэффициенты первого и второго уравнения стали равны.
Найдём множитель:
?21 = а21 / а11 = 22.968 / 32.5094 = 0.7065
Умножим на него первое уравнение:
32.5094a * 0.7065 + 22.968b * 0.7065 + 16.94 * 0.7065 = 40.83941 * 0.7065
Получим:
22.968a + 16.2269b + 11.9681c = 28.853043
Теперь нужно это уравнение почленно вычесть из второго:
0a + 0.7131b + 1.2319c = 2.266929
Аналогично преобразуем третье уравнение:
i31 = a31 / a11 = 16.94 / 32.5094 = 0.5211
32.5094a * 0.5211 + 22.968b * 0.5211 + 16.94c * 0.5211 = 40.83941 * 0.5211
16.94a + 11.9686b + 8.8274c = 21.281416
Вычтем это уравнение из третьего, получим:
0a +1.2314b + 2.1726c = 4.042284
Таким образом, получится система, эквивалентная исходной:
32.5094a + 22.968b + 16.94c = 40.83941
0.7131b + 1.2319c = 2.266929
1.2314b + 2.1726c = 4.042284
Третье уравнение нужно преобразовать так, чтобы второй его коэффициент стал
равен нулю. Найдём множитель:
?32 = a32 / a22 = 1.2314 / 0.7131 = 1.7268
Умножим второе уравнение на него:
0.7131b * 1.7268 + 1.2319c * 1.7268 = 2.266929 * 1.7268
1.2314b + 2.1272c = 3.914533
Вычтем получившееся уравнение из третьего:
0b + 0.0454c = 0.127751
Получим треугольную матрицу, эквивалентную исходной:
32.5094a + 22.968b + 16.94c = 40.83941
0.7131b + 1.2319c = 2.266929
0.0454c = 0.127751
Теперь найдём коэффициенты:
c = 0.127751 / 0.0454 = 2.813899
b = (2.266929 - 1.2319 * 2.813899) / 0.7131 = - 1.682111
a = (40.83941 - 16.94 * 2.813899 - 22.968 * (- 1.682111) ) / 32.5094 =
0.978384
Проверим результаты вычислений, подставив полученные значения корней в исходную систему:
32.5094 * 0.978384 + 22.968 * (- 1.682111) + 16.94 * 2.813899 =
40.83941
22.968 * 0.978384 + 16.94 * (- 1.682111) + 13.2 * 2.813899 = 31.119972
16.94 * 0.978384 + 13.2 * (- 1.682111) + 11 * 2.813899 = 25.3237
40.8394 ( 40.83941
31.12 ( 31.119972
25.3228 ( 25.3237
Таким образом, уравнение аппроксимирующей параболы имеет вид:
F (x) = 0.978384x2 - 1.682111x + 2.813899
4. НАХОЖДЕНИЕ ЗНАЧЕНИЙ АППРОКСИМИРУЮЩЕЙ ФУНКЦИИ
Найдём значения функции F(x) = 0.978384 x2 - 1.682111 x + 2.813899
на интервале [0.7; 1.7] с шагом h=0.1
x0 = 0.7
F( x0 ) = 0.978384 * 0.72 - 1.682111 * 0.7 + 2.813899 = 2.118622
x1 = x0 + h = 0.7 + 0.1 = 0.8
F( x1 ) = 0.978384 * 0.82 - 1.682111 * 0.8 + 2.813899 = 2.095734
x2 = 0.8 + 0.1 = 0.9
F( x2 ) = 0.978384 * 0.92 - 1.682111 * 0.9 + 2.813899 = 2.092711
x3 = 0.9 + 0.1 = 1.0
F( x3 ) = 0.978384 * 1.02 - 1.682111 * 1.0 + 2.813899 = 2.109553
x4 = 1.0 + 0.1 = 1.1
F( x4 ) = 0.978384 * 1.12 - 1.682111 * 1.1 + 2.813899 = 2.14626
x5 = 1.1 + 0.1 = 1.2
F( x5 ) = 0.978384 * 1.22 - 1.682111 * 1.2 + 2.813899 = 2.202831
x6 = 1.2 + 0.1 = 1.3
F( x6 ) = 0.978384 * 1.32 -1.682111 * 1.3 + 2.813899 = 2.279266
x7 = 1.3 + 0.1 = 1.4
F( x7 ) = 0.978384 * 1.42 - 1.682111 * 1.4 + 2.813899 = 2.375567
x8 = 1.4 + 0.1 = 1.5
F( x8 ) = 0.978384 * 1.52 - 1.682111 * 1.5 + 2.813899 = 2.491732
x9 = 1.5 + 0.1 = 1.6
F( x9 ) = 0.978384 * 1.62 - 1.682111 * 1.6 + 2.813899 = 2.627762
x10 = 1.6 + 0.1 = 1.7
F( x10 ) = 0.978384 * 1.72 - 1.682111 * 1.7 + 2.813899= 2.783656
5. РАСЧЕТ ПОГРЕШНОСТИ АПРОКСИМАЦИИ.
Для вычисления погрешности аппроксимации вычислим величину среднеквадратичного отклонения:
[pic]
Здесь yi - значения решения дифференциального уравнения, полученные в
п.1.2. (см. Таблицу 1), F(xi) - значения аппроксимирующей функции при тех
же значениях xi, полученные в п. 4. Их разность показывает величину
отклонения аппроксимирующей функции от аппроксимируемой в узлах xi.
Рассчитаем погрешность аппроксимации:
[pic]0 = F( x0 ) - y0 = 2.118622 - 2.1 = 0.018622
[pic]02 = 3.46779 * 10 - 4
[pic]1 = F( x1 ) - y1 = 2.095734 - 2.09763 = - 0.001896
[pic]12 = 3.59482 *10 - 6
[pic]2 = F( x2 ) - y2 = 2.092711 - 2.105547 = - 0.012836
[pic]22 = 1.64763 * 10 - 4
[pic]3 = F( x3 ) - y3 = 2.109553 - 2.125049 = - 0.015496
[pic]32 = 2.40126 * 10 - 4
[pic]4 = F( x4 ) - y4 = 2.14626 - 2.157721 = - 0.011461
[pic]42 = 1.31355 * 10 - 4
[pic]5 = F( x5 ) - y5 = 2.202831 - 2.205613 = - 0.002782
[pic]52 = 7.73953 * 10 - 6
[pic]6 = F( x6 ) - y6 = 2.279266 - 2.271475 = 0.007791
[pic]62 = 6.06997 * 10 - 5
[pic]7 = F( x7 ) - y7 = 2.375567 - 2.359045 = 0.06522
[pic]72 = 2.72977 * 10 - 4
[pic]8 = F( x8 ) - y8 = 2.491732 - 2.473328 = 0.08404
[pic]82 = 3.38707 * 10 - 4
[pic]9 = F( x9 ) - y9 = 2.627762 - 2.620626 = 0.007136
[pic]92 = 5.09225 * 10 - 5
[pic]10 = F( x10 ) - y10 = 2.783656 - 2.807662 = - 0.024006
[pic]102 = 5.76288 * 10 -4
( = ( 0.0021939515 = ( 1.9945013 * 10 - 4 = 0.014122681 [pic]1.412268 *
10 - 2
Данные расчётов снесены в Таблицу 2.
Таблица 2. Расчёт погрешности аппроксимации.
|I |xi |yi |F(xi) |[pic]i |[pic]i2 |
|0 |0.7 |2.1 |2.118622 |0.018622 |3.46779 * 10 - 4|
|1 |0.8 |2.09763 |2.095734 |- 0.001896 |3.59482 * 10 - 6|
|2 |0.9 |2.105547 |2.092711 |- 0.012836 |1.64763 * 10 - 4|
|3 |1.0 |2.125049 |2.109553 |- 0.015496 |2.40126 * 10 - 4|
|4 |1.1 |2.157721 |2.14626 |- 0.011461 |1.31355 * 10 - 4|
|5 |1.2 |2.205613 |2.202831 |- 0.002782 |7.73953 * 10 - 6|
|6 |1.3 |2.271475 |2.279266 |0.007791 |6.06997 * 10 - 5|
|7 |1.4 |2.359045 |2.375567 |0.06522 |2.72977 * 10 - 4|
|8 |1.5 |2.473328 |2.491732 |0.08404 |3.38707 * 10 - 4|
|9 |1.6 |2.620626 |2.627762 |0.007136 |5.09225 * 10 - 5|
|10 |1.7 |2.807662 |2.783656 |- 0.024006 |5.76288 * 10 - 4|
График погрешности аппроксимации представлен на рисунке 4.
[pic]
График аппроксимирующей
функции представлен на рисунке 5.
Рекомендуем скачать другие рефераты по теме: диплом купить, реферат на тему человек.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата