Тригонометричні ефемериди планет Сонячної системи
Категория реферата: Рефераты по информатике, программированию
Теги реферата: реферат на тему, курсовые работы бесплатно
Добавил(а) на сайт: Jemskij.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
e – ексцентриситет орбіти ( геометрична властивість еліпса орбіти) Aeo ,
a – велика піввісь орбіти (середня відстань від планети до Сонця в а.о. )
Aao ,
v – кут справжньої аномалії ( кут у площині орбіти від перигелію до точки на
орбіті, де перебуває планета),
оскільки v = ( - Aap де:
( - геліоцентрична довгота планети ( кут між точкою весняного рівнодення і точкою на орбіті де перебуває планета ) AG,
отже:
[pic] або [pic] ( 2 )
Це головна формула, яка визначає рух планети по еліптичній орбіті.
Невідоми-
ми величинами тут є AG і AR: геліоцентрична довгота і радіус-вектор – основ-
ні ефемериди планети з яких в подальшому будуть визначатися інші.
Отже перед початком роботи програми нам відомі елементи орбіти, що є конс-
тантами, номер дати спостереження , початкові координати планети: геліоцентри-
чна довгота і радіус-вектор в початковий момент часу 9 січня 1990р.
Використає-
мо 2 закон Кеплера для опису руху планети. Він говорить, що площа секторів
еліпса орбіти за одинаків проміжок часу однакова. Оскільки швидкість руху планети по орбіті незмінна, то дуги цих секторів будуть також однакові .
S1 = S2 ; R1 = R2
Знаючи елементи орбіти можемо визначити площу всього еліпса орбіти і поділивши на період обертання визначити площу еліпса за один день (n=1), або
за одну годину чи одну хвилину ( відповідно n=1/24, n=1/1440).
[pic] ( в а.о.2 )
( 3 )
Знаючи орбітальну швидкість (км/с) можемо визначити лінійну довжину дуги
еліпса орбіти за один день ( відповідно за 1 год., за 1 хв. )
R:= vорб * 86400 / AO ( * n ) ( в а.о.
) ( 4 )
де:
Рекомендуем скачать другие рефераты по теме: 6 класс контрольные работы, реферат на тему життя.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата