Алгебраические расширения полей
Категория реферата: Рефераты по математике
Теги реферата: диплом купить, банк курсовых работ бесплатно
Добавил(а) на сайт: Jakobson.
Предыдущая страница реферата | 7 8 9 10 11 12 13 14 15 16 17 | Следующая страница реферата
Из доказанной теоремы вытекают три следствия.
1. Степень функции h — f(х)/g(х) зависит лишь от полей D(h) и D(x), а не от того или иного выбора порождающего элемента х.
2. Равенство Д (h) = D(х) имеет место тогда и только тогда, когда h имеет степень 1, т. е. является дробно-линейной функцией. Это означает: порождающим элементом поля, кроме элемента х, может служить любая дробно-линейная функция от x и только такая функция.
3. Любой автоморфизм поля D(х), оставляющий на месте каждый элемент поля D, должен переводить элемент x в какой-либо порождающий элемент поля. Обратно, если х переводится в какой-либо порождающий элемент х = (ax+b)/(cx+d) и каждая функция j(х) — в функцию j(х), то получается автоморфизм, при котором все элементы из D остаются на месте. Следовательно,
Все автоморфизмы поля D(x) над полем D являются дробно-линейными подстановками
x = (ax+b)/(cx+d), ad – bc ¹ 0.
Важной для некоторых геометрических исследований является
Теорема Люрота. Каждое промежуточное поле S, для которого DÌSÍD(x), является простым трансцендентным расширением: S = D(q).
Доказательство. Элемент х должен быть алгебраическим над S, потому что если h — любой элемент из S не принадлежащий полю D, то, как было показано, элемент х является алгебраическим над D(h) и тем более алгебраическим над S. Пусть неразложимый в кольце многочленов S[z] многочлен со старшим коэффициентом 1 и корнем x имеет вид
f0(z) = zn+a1zn-1+…+an. (1)
Выясним строение этого многочлена.
Элементы ai являются рациональными функциями от x. С помощью умножения на общий знаменатель их можно сделать целыми рациональными функциями и, кроме того, получить многочлен относительно x с содержанием 1:
f( x, z) =b0(x)zn+b1 (x)zn-1+…+bn(x).
Степень этого многочлена по х обозначим через т, а по z — через п.
Коэффициенты ai = bi / b0 из (1) не могут все быть независимыми от х, так как иначе х оказался бы алгебраическим элементом над D; поэтому один из них, скажем,
q = ai = bi(x)/ b0(x),
должен фактически зависеть от х; запишем его в несократимом виде:
q = g(x)/h(x)
Степени многочленов g(х) и h(х) не превосходят т. Многочлен
g(z) - qh(z) = g(z) – (g(x)/h(x))h(z)
(не являющийся тождественным нулем) имеет корень z = x, а потому он делится на f 0(z) в кольце S[z]. Если перейти от этих рациональных по х многочленов к целым по х многочленам с содержанием 1, то отношение делимости сохранится, и мы получим
h(x)g(z)-g(x)h(z) = q(x, z)f(x, z).
Левая часть в этом равенстве имеет степень по х, не превосходящую т. Но справа уже многочлен f имеет степень т; следовательно, степень левой части в точности равна т и q(х, z) не зависит от х. Однако зависящий лишь от z множитель не может делить левую часть (см. выше); поэтому q(х, z) является константой:
h(x)g(z)-g(x)h(z) = qf(x, z).
Так как присутствие константы q роли не играет, строение многочлена f(х, z) описано полностью. Степень многочлена f(х, z) по х равна т следовательно (по соображениям симметрии), и степень по z равна т, так что m = п. По меньшей мере одна из степеней многочленов g(x) и h(х) должна фактически достигать значения m, следовательно, и функция q должна иметь степень т по х.
Рекомендуем скачать другие рефераты по теме: рефераты без регистрации, реферат влияние.
Предыдущая страница реферата | 7 8 9 10 11 12 13 14 15 16 17 | Следующая страница реферата