Тогда, для хранения матрицы жесткости необходимо построчно запоминать информацию о коэффициентах, соответствующих узлам, с которыми связан данный узел. На рис. 2 приведены матрица жесткости и ее компактное
представление для сетки изображенной на рис 1 [9].
Текст подпрограммы, реализующий предложенный алгоритм анализа структуры КЭ-разбиения
тела, приведен в Приложении 1.
Данный способ компактного хранения матрицы жесткости позволяет легко его использовать совместно с каким-нибудь численным методом.
Наиболее удобным для этой цели представляется использование вышеизложенного итерационного метода Ланцоша, так как на каждой итерации требуется только
перемножать матрицу коэффициентов СЛАУ и заданный вектор. Следовательно, для использования предложенного метода компактного хранения СЛАУ необходимо
построить прямое и обратное преобразование в первоначальную квадратную матрицу.
Пусть – элемент первоначальной квадратной матрицы размерностью , а - ее компактное представление. Тогда для обратного
преобразования будут справедливы следующие соотношения:
, (*)
где m – количество степеней свободы (m=1,2,3).
Для прямого преобразования будут справедливы соотношения, обратные к соотношениям (*).
3 ЧИСЛЕННЫЕ ЭКСПЕРИМЕНТЫ
Для проверки предлагаемого метода компактного хранения матрицы жесткости была решена задача о контактном взаимодействии оболочечной
конструкции и ложемента [12] (рис. 4).
Данная задача часто возникает на практике при транспортировке или хранении с горизонтальным расположением оси оболочечные
конструкции устанавливаются на круговые опоры - ложементы. Взаимодействие подкрепленных оболочечных конструкций и ложементов осуществляется через опорные
шпангоуты, протяженность которых вдоль оси оболочки соизмерима с шириной ложементов и много меньше радиуса оболочки и величины зоны контакта.
Данная задача решалась методом конечных элементов при помощи системы FORL [5]. Дискретная модель ложемента
(в трехмерной постановке) представлена на Рис. 5.
При построении данной КЭ-модели было использовано 880 узлов и 2016 КЭ в форме тетраэдра.
Полный размер матрицы жесткости для такой задачи составляет байт, что
приблизительно равно 2,7 Мбайт оперативной памяти. Размер упакованного представления составил около 315 Кбайт.
Данная задача решалась на ЭВМ с процессором Pentium 166 и 32 МБ ОЗУ двумя способами – методом Гаусса
и методом Ланцоша. Сопоставление результатов решения приведено в Таблице 1.
Таблица
1.
Время решения (сек)
Метод
Гаусса
280
2.2101
-2.4608
1.3756
-5.2501
1.7406
-2.3489
Метод Ланцоша
150
2.2137
-2.4669
1.3904
-5.2572
1.7433
-2.3883
Из Таблицы 1 легко видеть, что результаты решения СЛАУ методом Гаусса и методом Ланцоша хорошо согласуются между собой, при этом время
решения вторым способом почти в два раза меньше, чем в случае использования метода Гаусса.
ВЫВОДЫ.
В данной работе были рассмотрены способы компактного хранения матрицы коэффициентов системы линейных алгебраических уравнений (СЛАУ)
и методы ее решения. Разработан алгоритм компактного хранения матрицы жесткости, позволяющий в несколько раз (иногда более чем в десятки раз)
сократить объем требуемой памяти для хранения такой матрицы жесткости.
Классические методы хранения, учитывающие симметричную и ленточную структуру матриц
жесткости, возникающих при применении метода конечных элементов (МКЭ), как правило, не применимы при решении контактных задач, так как при их решении
матрицы жесткости нескольких тел объединяются в одну общую матрицу, ширина ленты которой может стремиться к порядку системы.
Предложенная в работе методика компактного хранения матриц коэффициентов СЛАУ и использования
метода Ланцоша позволили на примере решения контактных задач добиться существенной экономии процессорного времени и затрат оперативной памяти.
СПИСОК ССЫЛОК.
1. Зенкевич О., Морган К. Конечные методы и аппроксимация // М.: Мир, 1980
2. Зенкевич О., Метод конечных элементов // М.: Мир., 1975
Рекомендуем скачать другие рефераты по теме: bestreferat ru, особенности реферата.