Билеты по математике
Категория реферата: Рефераты по математике
Теги реферата: диплом на заказ, возраст реферат
Добавил(а) на сайт: Максим.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Замечание: Пусть теперь область Д ограничена следующими линиями:
x=y1(y) c £ y £ d – слева; x=y2(y) c £ y £ d – справа;
x = c – сверху; x = d – снизу. И пусть
Тогда аналогично предыдущему можно показать, что существует повторный интеграл и
Если же функция f(x;y) такова, что существует двойной интеграл, существует оба повторных, то одновременно имеют место формулы (1) и (2) и можно пользоваться любой из них.Вопрос №5
Формула Грина.
Теорема: Пусть задана область Д огран. след. кривыми:
y=j1(x) a £ x £ b
y=j2(x) a £ x £ b
x=a , x=b, где ф-ции j1 и j2 непрер. на (a,b). Пусть в этой области задаётся функция P(x,y) – непрер. и имеющая непрер. частную производную: , тогда имеет место след. равенство:
Доказательство:
Рассмотрим двойной интеграл, стоящий справа в формуле(1). Т.к. под интегралом стоит непрер. функция, то такой двойной интеграл существует, также существует одномерный интеграл и его можно вычислить через повторный:
Теорема: Пусть задана область Д огран.:
y=j1(x) с £ x £ d
y=j2(x) c £ x £ d
x=c , x=d. И пусть в этой области задаётся функция Q(x,y) – непрер. и имеющая непрер. частную производную: , тогда имеет место след. равенство:
Cкладываем формулы (1) и (2) и получаем следующую формулу Грина для области Д:
Рекомендуем скачать другие рефераты по теме: шпаргалки для студентов, титульный дипломной работы.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата