Билеты по математике
Категория реферата: Рефераты по математике
Теги реферата: диплом на заказ, возраст реферат
Добавил(а) на сайт: Максим.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
D P(x,y), Q(x,y) ,
Вычисление площадей через крив интеграл
Применим ф. Грина, т.е. выразим его через криволинейный интеграл по границе области.
1. Q = x P = 0
2. Q = 0 P = -y
Суммируем 1 и 2 :
Пример: Вычислить площадь эллипса
.
Сделаем замену переменных 0 £ t £ 2p
Вопрос №6
Неприрывную кривую назыв. простой кривой (жордановой), если она не имеет точек самопересечения.
Областью называется всякое открытое связаное мн-во, т.е. такое мн-во всякая точка кот. явл. внутренней и любые две точки этого мн-ва можно соединить непрерывной кривой все точки кот. принадлежат данному мн-ву.
Область называется односвязной областью, если внутренность всякой замкнутой кривой содержит только точки данного мн-ва.
Теорема 1. Пусть Д ограниченная односвязная область пл-ти x и y, тогда для того чтобы криволинейный интеграл
был равен нулю по любой замкнутой кривой ГÌД, (где P(x,y) и Q(x,y) непрерыв. И имеет непрерыв. Частные производ. и ) необходимо и достаточно чтобы вып. Такое равенство
= (2)
f(x,y)eД.
Док-во: Пусть во всей области Д вып. Равенство (2) и Г произвольная простая замкнутая кривая принадлеж. области Д. Обознач. Через обл. Д1 кот. огранич. Эта кривая Г. Применим к этой области формулу Грина:
Рекомендуем скачать другие рефераты по теме: шпаргалки для студентов, титульный дипломной работы.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата