Численное интегрирование определённых интегралов
Категория реферата: Рефераты по математике
Теги реферата: оформление диплома, сочинение 7
Добавил(а) на сайт: Грибов.
Предыдущая страница реферата | 1 2
II.Приближённые методы вычисления.
Как мы уже отметили, если функция f непрерывна на промежутке, то на этом промежутке существует функция F такая, что F’=f, то есть существует первообразная для функции f, но не всякая элементарная функция f имеет элементарную первообразную F. Объясним понятие элементарной функции.
Функции: степенная, показательная, тригонометрическая, логарифмическая, обратные тригонометрическим называются основными элементарными функциями.
Элементарной функцией называется функция, которая может быть задана с
помощью формулы, содержащей лишь конечное число арифметических операций и
суперпозиций основных элементарных.
Например следующие интегралы: ?e-xdx; ?[pic]; ?dx/ln|x|; ?(ex/x)dx;
?sinx2dx; ?ln|x|sinxdx существуют, но не выражаются в конечном виде через
элементарные функции, то есть относятся к числу интегралов, «не берущихся»
в элементарных функциях.
Бывает, что на практике сталкиваются с вычислением интегралов от функций, которые заданы табличными и графическими способами, или интегралы от функций, первообразные которых выражаются через элементарные функции очень сложно, что не удобно, долго и не рационально. В этих случаях вычисление определённого интеграла по формуле Ньютона-Лейбница (1) сводит вычисление определённого интеграла от какой-либо функции к нахождению её первообразной. Значит, если первообразная не элементарна, надо вычислить определённый интеграл как-то по другому, поэтому прибегают к различным методам приближённого интегрирования.
В основе приближённых методов интегрирования лежит геометрический смысл определённого интеграла, который рассмотрен выше.
Формул приближённого интегрирования существует много. В данной курсовой работе будет рассмотрено три метода приближённого интегрирования: метод трапеций, метод прямоугольников и метод Симпсона.
1. Формула прямоугольников
Теперь рассмотрим первый вид приближённого вычисления:
требуется вычислить определённый интеграл: [pic].
Пусть на отрезке [a,b] задана непрерывная функция y=f(x). Разделим отрезок [a,b], аналогично как в формуле трапеций: точками a=x0,x1,x2,…,xn=b на n равных частей длины ?х, где ?х=(b-a)/n.
[pic]Обозначим через y0,y1,y2,…,yn-1,yn значение функции f(x) в точках x0, x1, x2…,xn, то есть, если записать в наглядной формуле:
Y0=f(x0), y1=f(x1), y2=f(x2)…yn,=f(xn).
В данном способе подынтегральную функцию заменяем функцией, которая
имеет ступенчатый вид (на рис. выделена).
Составим суммы: y0?x+ y1?x1+ y2?x2…+yn-1?x; Y1?x+ y2?x+…+yn?x
Каждое слагаемое этих сумм выражает площадь, полученных прямоугольников с основанием ?х, которое является шириной прямоугольника, и длиной выраженной через yi: Sпр=a*b=yi?x.
Каждая из этих сумм является интегральной суммой для f(x) на отрезке
[a,b], и равна площади ступенчатых фигур, а значит приближённо выражает
интеграл. Вынесем ?x=(b-a)/n из каждой суммы, получим:
[pic]f(x)dx??x(y0+y1+…+yn-1);
[pic]f(x)dx??x(y1+y2+…+yn).
Выразив x, получим окончательно:
[pic]f(x)dx?((b-a)/n)(y0+y1+…+yn-1);(3)
[pic]f(x)dx?((b-a)/n)(y1+y2+…+yn);(3*)
Это и есть формулы прямоугольников. Их две, так как можно использовать
два способа замены подынтегральной функции. Если f(x)- положительная и
возрастающая функция, то формула (3) выражает S фигуры, расположенной под
графиком, составленной из входящих прямоугольников, а формула (3*)- площадь
ступенчатой фигуры, расположенной под графиком функции составленной из
выходящих треугольников.
Ошибка, совершаемая при вычислении интегралов по формуле прямоугольников, будет тем меньше, чем больше число n (то есть чем меньше шаг деления)[pic].
Для вычисления погрешности этого метода используется формула:
Pnp=[pic], где [pic] Результат полученный по формуле (3) заведомо даёт
большую площадь прямоугольника, так же по формуле (3*) даёт заведомо
меньшую площадь, для получения среднего результата используется формула
средних прямоугольников:[pic] (3**)
2.Формула трапеций.
Возьмём определённый интеграл ?f(x)dx, где f(x)- непрерывная подынтегральная функция, которую мы для наглядности будем предполагать положительной. При вычислении интеграла с помощью формулы трапеций подынтегральная функция f заменяется функцией, график которой представляет собой ломанную линию (на рисунке 2 красным цветом), звенья которой соединяют концы ординат yi-1 и yi (i=1,2,…,n).[pic]Тогда площадь криволинейной трапеции, ограниченной линиями x=a, x=b, y=0, y=f(x), а значит (следуя из геометрического смысла), и значение нужного нам интеграла, приблизительно равна сумме площадей обычных трапеций с основаниями yi-1 и yi и высотой h=(b-a)/n, так как (если более привычно выражать для нас) h это ?x,a ?x=(b-a)/n при делении отрезка на n равных отрезков при помощи точек x0=a
Скачали данный реферат: Shabanov, Носов, Luka, Шелепин, Голышев, Пров.
Последние просмотренные рефераты на тему: реферат роль, новшество, современные рефераты, гражданин реферат.
Предыдущая страница реферата | 1 2