Дифференциальные уравнения гиперболического типа
Категория реферата: Рефераты по математике
Теги реферата: переплет диплома, жизнь человека реферат
Добавил(а) на сайт: Jacenko.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
(2)
(3)
Преобразуем это уравнение к каноническому виду, содержащему смешанную производную. Уравнение характеристик
распадается на два уравнения:
, ,
интегралами которых являются прямые
, .
Вводя новые переменные
, ,
уравнение колебания струны преобразуем к виду:
. (4)
Найдем общий интеграл последнего уравнения. Очевидно, для всякого решения уравнения (4)
,
где - некоторая функция только переменного . Интегрируя это равенство по при фиксированном , получим
, (5)
где и являются функциями только переменных и .Обратно, каковы бы ни были дважды дифференцируемые функции и , функция , определяемая формулой (5), представляет собой решение уравнения (4). Так как всякое решение уравнения (4)может быть представлено в виде (5) при соответствующем выборе и , то формула (5) является общим интегралом этого уравнения. Следовательно, функция
(6)
является общим интегралом уравнения (2).
Допустим, что решение рассматриваемой задачи существует; тогда оно дается формулой (6). Определим функции и таким образом, чтобы удовлетворялись начальные условия:
(7)
. (8)
Интегрируя второе равенство, получим:
где и C – постоянные. Из равенства
Рекомендуем скачать другие рефераты по теме: фонды реферат, соціологія шпори.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата