Дифференциальные уравнения гиперболического типа
Категория реферата: Рефераты по математике
Теги реферата: переплет диплома, жизнь человека реферат
Добавил(а) на сайт: Jacenko.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
находим:
(9)
Таким образом, мы определили функции и через заданные функции и , причем равенства (9) должны иметь место для любого значения аргумента. Подставляя в (6) найденные значения и , получим:
или
, (10)
Формулу (10), называемую формулой Даламбера, мы получили, предполагая существование решения поставленной задачи. Эта формула доказывает единственность решения. В самом деле, если бы существовало второе решение задачи (2) – (3), то оно представлялось бы формулой (10) и совпадало бы с первым решением.
Нетрудно проверить, что формула (10) удовлетворяет (в предположении двукратной дифференцируемости функции и однократной дифференцируемости функции ) уравнению и начальным условиям. Таким образом, изложенный метод доказывает как единственность, так и существование решения поставленной задачи.
2.2.2.Физический интерпретация.
Функция , определяемая формулой (10), представляет собой процесс распространения начального отклонения и начальной скорости. Если фиксировать , то функция дает профиль струны в момент , фиксируя , получим функцию , дающую процесс движения точки . Предположим, что наблюдатель, находившийся в точке x=0 в момент t=0, движется со скоростью a в положительном направлении. Введем систему координат, связанную с наблюдателем, полагая , . В этой подвижной системе координат функция будет определятся формулой и наблюдатель все время будет видеть тот же профиль, что и в начальный момент. Следовательно, функция представляет неизменный профиль f(x), перемещающийся вправо (в положительном направлении оси x) со скоростью a (распространяющуюся или бегущую волну). Функция f(x+at) представляет, очевидно, волну, распространяющуюся налево (в отрицательном направлении оси x) со скоростью a. Таким образом, общее решение (10) задачи Коши для бесконечной струны есть суперпозиция двух волн , одна из которых распространяется направо со скоростью a, а вторая – налево с той же скоростью. При этом
,
где .
Для выяснения характера решения (10) удобно пользоваться плоскостью состояний (x,t) или «фазовой плоскостью». Прямые x-at=const и x+at=const являются характеристиками уравнения (2). Функция вдоль характеристики x-at=const сохраняет постоянное значение, функция постоянна вдоль характеристики x+at=const.
Предположим, что f(x) отлична от нуля только в интервале и равна нулю вне этого интервала. Проведем характеристики и через точки и ; они разбивают полуплоскость (x,t>0) на три области I, II, и III (рис. 3, а).
Функция отлична от нуля только в области II, где и характеристики и представляют передний и задний фронты распространяющейся направо волны.
Рассмотрим теперь некоторую фиксированную точку и приведем из нее обе характеристики и , которые пересекут ось x в точках , t=0 и , t=0. Значение функции в точке равно , т. е. определяется значениями функций и в точках и , являющихся вершинами треугольника MPQ (рис. 3, б), образованного двумя характеристиками и осью x. Этот треугольник называется характеристическим треугольником точки . Из формулы (10) видно, что отклонение точки струны в момент зависит только от значений начального отклонения в вершинах P(x0-at0,0) и Q(x0+at0,0) характеристического треугольника MPQ и от значений начальной скорости на стороне PQ. Это становится особенно ясным, если формулу (10) записать в виде
(11)
Начальные данные, заданные вне PQ, не оказывают влияния на значения в точке . Если начальные условия заданы не на всей бесконечной прямой, а на отрезке , то они однозначно определяют решение внутри характеристического треугольника, основанием которого является отрезок .
2.2.3. Пример.
Решение (10) можно представить в виде суммы , где
(12)
. (13)
Рекомендуем скачать другие рефераты по теме: фонды реферат, соціологія шпори.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата