Дисперсионный анализ
Категория реферата: Рефераты по математике
Теги реферата: реферат отрасль, реферат электрические
Добавил(а) на сайт: Роман.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
………………… = (xij), (i = 1,2, …, m; j = 1,2, …, n).
xm1 xm2 … xmn
Необходимо проверить существенность влияния партий изделий на их качество.
Если полагать, что элементы строк матрицы наблюдений – это численные значения случайных величин Х1,Х2,...,Хm, выражающих качество изделий и имеющих нормальный закон распределения с математическими ожиданиями соответственно a1,а2,...,аm и одинаковыми дисперсиями σ2, то данная задача сводится к проверке нулевой гипотезы Н0: a1=a2 =...= аm, осуществляемой в дисперсионном анализе.
Усреднение по какому-либо индексу обозначено звездочкой (или точкой) вместо индекса, тогда средний показатель качества изделий i-й партии, или групповая средняя для i-го уровня фактора, примет вид:
, (4)
где i* – среднее значение по столбцам;
ij – элемент матрицы наблюдений;
n – объем выборки.
А общая средняя:
. (5)
Сумма квадратов отклонений наблюдений хij от общей средней ** выглядит так:
2=2+2+
+22. (6)
или
Q = Q1 + Q2 + Q3.
Последнее слагаемое равно нулю
=0. (7)
так как сумма отклонений значений переменной от ее средней равна нулю, т.е.
2=0.
Первое слагаемое можно записать в виде:
В результате получается тождество:
Q = Q1 + Q2, (8)
где - общая, или полная, сумма квадратов отклонений;
Рекомендуем скачать другие рефераты по теме: лечение шпоры, шпаргалки по экономическому.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата