Экстремумы функций многих переменных
Категория реферата: Рефераты по математике
Теги реферата: изложение по русскому 7 класс, сочинение тарас бульбо
Добавил(а) на сайт: Янкевич.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
Если , то функция имеет в точке 0 и C>0 (Из условия следует, что A и C обязательно имеют одинаковые знаки).
Если, то точка не является точкой экстремума.
Если, то неясно, является ли точка точкой экстремума и требуется дополнительное исследование.
Пример:
1) Ранее в примере было установлено, что функция
имеет четыре стационарные точки:
Вторые частные производные данной функции равны
В точке имеем: A=10, B=0, C=2. Здесь ; значит, точка является точкой экстремума, и так как A и C положительны, то этот экстремум - минимум.
В точке соответственно будет A=-10, B=0, C=-4/3; .
Это точка максимума. Точки и не являются экстремумами функции (т.к. в них).
2) Найдем точки экстремума функции ;
Приравнивая частные производные нулю:
,
находим одну стационарную точку - начало координат. Здесь A=2, B=0, C= -2. Cледовательно, и точка (0, 0)
не является точкой экстремума. Уравнение есть уравнение гиперболического параболоида (см. Рис. 2.) по рисунку видно, что точка (0, 0) не является точкой экстремума.
Локальные Экстремумы
Определение1: Говорят, что функция имеет в точке локальный максимум, если существует такая окрестность точки , для которой для всякой точки M с координатами (x, y) выполняется неравенство: . При этом, т. е. приращение функции < 0.
Определение2: Говорят, что функция имеет в точке локальный минимум, если существует такая окрестность точки , для которой для всякой точки M с координатами (x, y) выполняется неравенство: . При этом, т. е. приращение функции > 0.
Определение 3: Точки локальных минимума и максимума называются точками экстремума.
Рекомендуем скачать другие рефераты по теме: реферат история развития, реферат на тему життя.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата