Исследование распределения температуры в тонком цилиндрическом стержне
Категория реферата: Рефераты по математике
Теги реферата: экзамен, защита диплома
Добавил(а) на сайт: Derevskov.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Где r1 = 4 (количество точек – 6, параметра – 2).
Нормальная система уравнений для определения новых оценок коэффициентов функции (2.5)с помощью МНК имеет вид:
(2.7)
Решая эту систему методом Гаусса, получим:
(2.8)
Чем лучше функция регрессии описывает эксперимент, тем меньше для неё должна быть оценка дисперсии отдельного измерения Ui, т.к. при плохом выборе функции в дисперсию войдут связанные с этим выбором дополнительные погрешности. Поэтому для того, чтобы сделать выбор между функциями U(x) и U(1)(x) нужно проверить значимость различия между соответствующими оценками дисперсии, т.е. проверить гипотезу:
Н0 – альтернативная гипотеза
Т.е. проверить, значимо ли уменьшение дисперсии при увеличении степени многочлена.
В качестве статического критерия рассмотрим случайную величину, равную:
(2.9)
имеющую распределение Фишера с(r ; r1) степенями свободы. Выбираем уровень распределения Фишера, находим критическое значение F*, удовлетворяющее равенству: p(F>F*=
В нашем случае F=349.02, а F*=10,13.
Если бы выполнилось практически невозможное соотношение F>F, имевшее вероятность 0,01, то гипотезу Н0 пришлось бы отклонить. Но в нашем случае можно ограничиться многочленом
, коэффициенты в котором неодинаковы.
3. Нахождение коэффициента теплопроводности .
Коэффициент вычислим по формуле (1.5), обозначим:
(3.1)
Определим допустимую абсолютную погрешность величины интеграла I, исходя из требования, чтобы относительная погрешность вычисления не превосходила 0,1%, т.е.:
(3.2)
Т.к. из (3.1) очевидно, что , то условие (3.2) заведомо будет выполнено, если:
(3.3)
Т.е. в качестве предельно допустимой абсолютной погрешности вычисления интеграла I возьмём 0,001Т (3.4)
Т=218 оС, следовательно, 0,218 оС.
3.1 Вычисление интеграла I методом трапеции
Использование теоретической оценки погрешности
Для обозначения требуемой точности количества частей n, на которые нужно разбить отрезок интегрирования [0;T] определяется по формуле:
Рекомендуем скачать другие рефераты по теме: реферат по труду, педагогические рефераты.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата