Изучение элементов современной алгебры, на примере подгрупп симметрических групп, на факультативных занятиях по математике
Категория реферата: Рефераты по математике
Теги реферата: реферат услуги, бесплатные рефераты без регистрации скачать
Добавил(а) на сайт: Клюкин.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
1) на основе анализа литературы обосновать возможность и целесообразность использования элементов современной алгебры на факультативных занятиях;
2) провести психолого-педагогический анализ развития абстрактного мышления учащихся старших классов;
3) разработать в рамках факультативного курса «Элементы современной алгебры» занятия по теме: «Понятие подгруппы. Подгруппы симметрических групп», а также разработать программу небольшого факультативного курса «Элементы теории групп. Симметрические группы»;
4) экспериментально проверить эффективность внедрения в программу факультативных курсов по математике элементов теории групп.
Методы исследования: анализ математической, методической и психолого- педагогической литературы по данной теме; отбор учебного материала для использования на факультативных занятиях; осуществление педагогического эксперимента.
Экспериментальная база исследования – национальная гимназия им. Н.Ф.
Катанова (г. Абакан, Республика Хакасия).
Результаты исследования обсуждались на семинарах, доказывались на научно-практической конференции «Катановские чтения» в апреле 2000 года.
Структура дипломной работы. Работа состоит из введения, двух глав, заключения, списка использованной литературы и приложений.
ГЛАВА 1. ПОДГРУППЫ СИММЕТРИЧЕСКИХ ГРУПП
В жизни современного общества очень важную роль играет математика. В настоящее время математика находит широкое применение при решении самых разнообразных проблем науки и практики. Особенно велика роль современной математики.
Одной из наиболее важных и быстро развивающихся областей современной математики является абстрактная алгебра.
В центре внимания современной абстрактной математики не только такие алгебраические структуры, как группы, подгруппы, полугруппы, кольца и так далее, ставшие уже классическими, и их далеко идущие обобщения, но и объекты новой природы [27].
Одним из основных разделов современной алгебры является теория групп.
Группы – это один из основных типов алгебраических структур.
Понадобилась работа нескольких поколений математиков, занявшая в общей сложности около ста лет, прежде чем идея группы вы кристаллизировалась с ее сегодняшней ясностью.
Теория групп начала оформляться в качестве самостоятельного раздела математики в конце XVIII века. В течение первый десятилетий XIX века она развивалась медленно и практически не привлекала к себе внимания. Но затем, около 1830 года, благодаря работам Галуа и Абеля о разрешимости алгебраических уравнений всего за несколько лет она совершила гигантский скачок, который оказал глубокое влияние на развитие всей математики. С тех пор основные понятия теории групп стали детально исследоваться [3].
В настоящее время теория групп является одной из самых развитых областей алгебры, имеющей многочисленные применения как в самой математике, так и за ее пределами – в топологии, теории функций, кристаллографии, квантовой механике и других областях математики и естествознания.
Понятие группы тесно связано с понятием подгруппы. Слово «подгруппа» означает «группа внутри группы».
Понятие подгруппы является основным в теории групп. Все содержание теории связано в большей или меньшей степени с вопросами о наличии в группе подгрупп с теми или иными специальными свойствами, о группах, которые могут быть вложены в данную группу, о тех или иных свойствах, характеризующих взаимное расположение подгрупп в группе, о способах построения группы по ее подгруппам. Кроме того, с помощью подгрупп можно описать внутреннюю структуру некоторых групп. Выделение тех или иных специальных типов групп также связано преимущественно с понятием подгруппы. Поэтому подгруппы играют особую роль в развитии и применении теории группы [3], [8].
1.1. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ
Определение: множество перестановок n-й степени образует по умножению группу, притом конечную порядка n!. Эта группа называется симметрической группой n-й степени и обозначается Sn.
Определение: подмножество Н множества Sn называется подгруппой группы
Sn, если оно является группой относительно действия умножения перестановок.
Такие подмножества играют важную роль для изучения строения группы Sn.
Симметрическая группа Sn имеет много разных подгрупп, причем их число очень быстро возрастает с увеличением числа n. Полностью описать все подгруппы группы Sn удается лишь для небольших n, а для n больших изучаются лишь общие свойства таких подгрупп.
Часто подгруппы симметрической группы Sn называют просто группами перестановок. В частности, само множество Sn также является своей подгруппой, то есть группа Sn будет подгруппой самой себя. Кроме того, множество состоящее лишь из одного единичного элемента, также является подгруппой, это вытекает из следующих равенств: E*E=E, E-1=E. Такая подгруппа называется единичной. Для каждой другой подгруппы Н группы Sn выполняется неравенство: 10, составляет циклическую группу n-го порядка в группе G, так что Н – подгруппа данной группы G простого порядка. По теореме Лагранжа порядок n этой подгруппы является делителем числа р. Так как [pic], то n=p. Но Н – подгруппа группы G. Следовательно, Н совпадает с группой G. Это доказывает утверждение 2).
Теорема доказана.
Рекомендуем скачать другие рефераты по теме: деловое общение реферат, решебник 9 класс.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата