Математические модели в экономике и программировании
Категория реферата: Рефераты по математике
Теги реферата: конспект на тему, реферат легкая атлетика
Добавил(а) на сайт: Druganin.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
С геометрической точки зрения все точки, удовлетворяющие этому неравенству, должны либо лежать на прямой , либо принадлежать одной из полуплоскостей, на которые разбивается плоскость этой прямой. Для того чтобы выяснить это, надо проверить какая из них содержит точку ().
Замечание 2. Если , то проще взять точку (0;0).
Условия неотрицательности также определяют полуплоскости соответственно с пограничными прямыми . Будем считать, что система неравенств совместна, тогда полуплоскости, пересекаясь, образуют общую часть, которая является выпуклым множеством и представляет собой совокупность точек, координаты которых являются решением данной системы — это множество допустимых решений. Совокупность этих точек (решений) называется многоугольником решений. Он может быть точкой, лучом, многоугольником, неограниченной многоугольной областью. Таким образом, задача линейного программирования состоит в нахождении такой точки многоугольника решений, в которой целевая функция принимает максимальное (минимальное) значение. Эта точка существует тогда, когда многоугольник решений не пуст и на нем целевая функция ограничена сверху (снизу). При указанных условиях в одной из вершин многоугольника решений целевая функция принимает максимальное значение. Для определения данной вершины построим прямую (где h — некоторая постоянная). Чаще всего берется прямая . Остается выяснить направление движения данной прямой. Это направление определяется градиентом (антиградиентом) целевой функции.
Вектор в каждой точке перпендикулярен прямой , поэтому значение f будет возрастать при перемещении прямой в направлении градиента (убывать в направлении антиградиента). Для этого параллельно прямой проводим прямые, смещаясь в направлении градиента (антиградиента).
Эти построения будем продолжать до тех пор, пока прямая не пройдет через последнюю вершину многоугольника решений. Эта точка определяет оптимальное значение.
Итак, нахождение решения задачи линейного программирования геометрическим методом включает следующие этапы:
Строят прямые, уравнения которых получаются в результате замены в ограничениях знаков неравенств на знаки точных равенств.
Находят полуплоскости, определяемые каждым из ограничений задачи.
Находят многоугольник решений.
Строят вектор .
Строят прямую .
Строят параллельные прямые в направлении градиента или антиградиента, в результате чего находят точку, в которой функция принимает максимальное или минимальное значение, либо устанавливают неограниченность сверху (снизу) функции на допустимом множестве.
Определяют координаты точки максимума (минимума) функции и вычисляют значение целевой функции в этой точке.
Задача о рациональном питании (задача о пищевом рационе)
Постановка задачи
Ферма производит откорм скота с коммерческой целью. Для простоты допустим, что имеется всего четыре вида продуктов: П1, П2, П3, П4; стоимость единицы каждого продукта равна соответственно С1, С2, С3, С4. Из этих продуктов требуется составить пищевой рацион, который должен содержать: белков — не менее b1 единиц; углеводов — не менее b2 единиц; жиров — не менее b3 единиц. Для продуктов П1, П2, П3, П4 содержание белков, углеводов и жиров (в единицах на единицу продукта) известно и задано в таблице, где aij (i=1,2,3,4; j=1,2,3) — какие-то определённые числа; первый индекс указывает номер продукта, второй — номер элемента (белки, углеводы, жиры).
продукт |
элементы |
|||
белки |
углеводы |
жиры |
||
П1 П2 П3 Рекомендуем скачать другие рефераты по теме: реферат на тему животные, курсовые и дипломные работы. Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата Поделитесь этой записью или добавьте в закладкиКатегории: |