Рефераты | Рефераты по математике | Математический тривиум | страница реферата 18 | Большая Энциклопедия Рефератов от А до Я
Большая Энциклопедия Рефератов от А до Я
  • Рефераты, курсовые, шпаргалки, сочинения, изложения
  • Дипломы, диссертации, решебники, рассказы, тезисы
  • Конспекты, отчеты, доклады, контрольные работы

  • Найти производные длин полуосей эллипсоида x2 + y2 + z2 + xy + yz + zx = 1 + εxy   по ε при ε = 0.

    88.

    Какие фигуры могут получиться при пересечении бесконечномерного куба двумерной плоскостью?

    89.

    Вычислить сумму векторных произведений [[x, y], z] + [[y, z], x] + [[z, x], y].

    90.

    Вычислить сумму коммутаторов матриц [A, [B, C]] + [B, [C, A]] + [C, [A, B]], где [A, B] = AB – BA.

    91.

    Найти жорданову нормальную форму оператора ed/dt в пространстве квазимногочленов {eltp(t)}, где степени многочленов p меньше 5; оператора adA, B ® [A, B] в пространстве (n × n)-матриц B, где A – диагональная матрица.

    92.

    Найти порядки подгрупп группы вращений куба и ее нормальные делители.

    93.

    Разложить пространство функций, заданных в вершинах куба, на инвариантные подпространства, неприводимые относительно группы а) его симметрий, б) его вращений.

    94.

    Разложить пятимерное вещественное линейное пространство на неприводимые инвариантные подпространства группы, порожденной циклической перестановкой базисных векторов.

    95.

    Разложить пространство однородных многочленов пятой степени от (x, y, z) на неприводимые подпространства, инвариантные относительно группы вращений SO(3).

    96.

    Каждый из 3600 абонентов телефонной станции вызывает ее в среднем раз в час. Какова вероятность того, что в данную секунду поступит 5 или более вызовов? Оценить средний промежуток времени между такими секундами (i, i + 1).

    97.

    Частица, блуждающая по целым точкам полуоси x ³ 0, с вероятностью a сдвигается на 1 вправо, с вероятностью b влево, в остальных случаях остается на месте (при x = 0 вместо сдвига влево точка остается на месте). Определить установившееся распределение вероятностей, а также математическое ожидание x и математическое ожидание x² через большое время, если вначале частица находилась в точке 0.

    98.

    Каждый из участников игры в очко на пальцах, стоящих по кругу, выбрасывает несколько пальцев правой руки, после чего для определения победителя суммарное число выкинутых пальцев отсчитывается по кругу от водящего. При каком числе участников N вероятность выигрыша хотя бы одного из подходящих N/10 участников становится больше 0,9? Как ведет себя при N ® ¥ вероятность выигрыша водящего?

    99.

    Один из игроков прячет монету в 10 или 20 копеек, а другой отгадывает. Отгадавший получает монету, не отгадавший платит 15 копеек. Честная ли это игра? Каковы оптимальные смешанные стратегии обоих участников?


    Рекомендуем скачать другие рефераты по теме: инновационная деятельность, сочинение на тему зимой.



    Предыдущая страница реферата | 9  10  11  12  13  14  15  16  17  18  19 |




    Поделитесь этой записью или добавьте в закладки

       




    Категории:



    Разделы сайта




    •