Метод бесконечного спуска
Категория реферата: Рефераты по математике
Теги реферата: здоровый образ жизни реферат, реферат обслуживание
Добавил(а) на сайт: Митасов.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Рефераты | Рефераты по математике | Метод бесконечного спускаМетод бесконечного спускаКатегория реферата: Рефераты по математике Теги реферата: здоровый образ жизни реферат, реферат обслуживание Добавил(а) на сайт: Митасов. Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата |
= |
|AD|2 |AC|2 |
. |
Таким образом, треугольник KEC, подобный треугольнику ACD, — прямоугольный равнобедренный, и мы можем проделать на его сторонах такое же построение, как на сторонах треугольника ACD. Отложим на [EC] отрезок EK1: |EK1| = |KC|; на [KC] — отрезок KE1: |KE1| = |K1C|. Точки K1 и E1 вновь попадут в точки деления. Треугольник K1CE1 снова окажется прямоугольным равнобедренным. Для него мы тем же способом построим треугольник K2CE2; эту процедуру можно продолжать без конца. При этом треугольники KjCEj становятся всё мельче, но всякий раз точки Kj и Ej будут попадать в первоначальные точки деления отрезков AC и CD. Но ведь этих точек только конечное число! А треугольников KjCEj бесконечно много. Это противоречие и доказывает иррациональность √2.
Прошли века... Появилось алгебраическое доказательство, пожалуй, более простое.
Доказательство второе
Иррациональность √2 означает, что у уравнения x2 = 2y2 нет решений в натуральных числах x, y. Допустим, что такие решения есть, и x = m, y = n — одно из них.
Из уравнения следует, что m — чётное число, m = 2m1. Подставляя m = 2m1 в уравнение, получаем n2 = 2m12, то есть x = n, y = m1 — тоже решение. Отметим при этом, что n < m, m1 < n. Теперь видно, что n — чётное число, n = 2n1, следовательно, m12 = 2n12. Таким образом, x = m1, y=n1 — решение уравнения, при этом m1 < n, n1 < m1. Мы можем поступать так же и дальше, получая всё меньшие и меньшие решения уравнения. Но здесь-то уже и есть противоречие. Ведь все числа m, n, m1, n1, ... — натуральные, m > n > m1 > n1 > ..., а бесконечной убывающей последовательности натуральных чисел быть не может! Значит, наше предположение было ошибочно, и число √2 иррационально.
Оба рассуждения по существу проходили по одной схеме: предположив, что у задачи есть решение, мы строили некоторый бесконечный процесс, в то время как по самому смыслу задачи этот процесс должен на чём-то кончаться. Подобный метод и называется методом бесконечного спуска *.
Часто метод спуска применяется в более простой форме. Предположив, что мы уже добрались до естественного конца процесса, мы видим, что «остановиться» не можем.
Доказательство третье
Пусть x = m, y = n — решение уравнения x2 = 2y2 с наименьшим возможным x. Число m должно быть чётным, m = 2m1, следовательно, x = m, y = m1 — тоже решение нашего уравнения. Однако m > n, что противоречит выбору решения m, n как «наименьшего».
Из этого варианта доказательства видно, что метод спуска сродни методу математической индукции. Оба метода основаны на том факте, что любое непустое множество натуральных чисел имеет минимальный элемент. Метод спуска наиболее удобен для доказательства «отрицающих» теорем.
Метод спуска в задачах
Задача 1. Доказать неразрешимость в натуральных числах уравнения
8x4 + 4y4 + 2z4 = t4.
Решение. Допустим, что решения есть, и x = m, y = n, z = p, t = r — решение с наименьшим возможным x. Из уравнения видно, что r — чётное число, r = 2r1.
Подставляя это решение в уравнение и деля на 2, получаем
4m4 + 2n4 + p4 = 8r14.
Теперь ясно, что p — чётное, p = 2p1, следовательно,
2m4 + n4 + 8p14 = 4r14.
Далее действуем так же: n = 2n1,
m4 + 8n14 + 4p14 = 2r14.
Наконец, m = 2m1,