Метод математической индукции
Категория реферата: Рефераты по математике
Теги реферата: бесплатные рефераты и курсовые, реферат деятельность
Добавил(а) на сайт: Zemljakov.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Введение
Слово индукция по-русски означает наведение, а индуктивными называют выводы, сделанные на основе наблюдений, опытов, т.е. полученные путем заключения от частного к общему.
Роль индуктивных выводов в экспериментальных науках очень велика. Они
дают те положения, из которых потом путем дедукции делаются дальнейшие
умозаключения. И хотя теоретическая механика основывается на трех законах
движения Ньютона, сами эти законы явились результатом глубокого
продумывания опытных данных, в частности законов Кеплера движения планет, выведенных им при обработке многолетних наблюдений датского астронома Тихо
Браге. Наблюдение, индукция оказываются полезными и в дальнейшем для
уточнения сделанных предположений. После опытов Майкельсона по измерению
скорости света в движущейся среде оказалось необходимым уточнить законы
физики, создать теорию относительности.
В математике роль индукции в значительной степени состоит в том, что она лежит в основе выбираемой аксиоматики. После того как длительная практика показала, что прямой путь всегда короче кривого или ломанного, естественно было сформулировать аксиому: для любых трех точек А, В и С выполняется неравенство
[pic].
Лежащее в основе арифметики понятие «следовать за» тоже появилось при наблюдениях за строем солдат, кораблей и другими упорядоченными множествами.
Не следует, однако, думать, что этим исчерпывается роль индукции в
математике. Разумеется, мы не должны экспериментально проверять теоремы, логически выведенные из аксиом: если при выводе не было сделано логических
ошибок, то они постольку верны, поскольку истинны принятые нами аксиомы. Но
из данной системы аксиом можно вывести очень много утверждений. И отбор тех
утверждений, которые надо доказывать, вновь подсказывается индукцией.
Именно она позволяет отделить полезные теоремы от бесполезных, указывает, какие теоремы могут оказаться верными, и даже помогает наметить путь
доказательства.
Суть Математической Индукции
Покажем на примере использование Метода Математической Индукции и в конце сделаем обобщающий вывод.
Пусть требуется установить, что каждое натуральное чётное число n в пределах 4 < n < 20 представимо в виде суммы двух простых чисел. Для этого возьмём все такие числа и выпишем соответствующие разложения:
4=2+2; 6=3+3; 8=5+3; 10=7+3; 12=7+5;
14=7+7; 16=11+5; 18=13+5; 20=13+7.
Эти девять равенств показывают, что каждое из интересующих нас чисел действительно представляется в виде суммы двух простых слагаемых.
Таким образом, полная индукция заключается в том, что общее утверждение доказывается по отдельности в каждом из конечного числа возможных случаев.
Иногда общий результат удаётся предугадать после рассмотрения не всех, а достаточно большого числа частных случаев (так называемая неполная индукция).
Результат, полученный неполной индукцией, остается, однако, лишь гипотезой, пока он не доказан точным математическим рассуждением, охватывающим все частные случаи. Иными словами, неполная индукция в математике не считается законным методом строгого доказательства, но является мощным методом открытия новых истин.
Пусть, например, требуется найти сумму первых n последовательных нечётных чисел. Рассмотрим частные случаи:
1=1=12
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
После рассмотрения этих нескольких частных случаев напрашивается следующий общий вывод:
1+3+5+…+(2n-1)=n2 т.е. сумма n первых последовательных нечётных чисел равна n2
Разумеется, сделанное наблюдение ещё не может служить доказательством справедливости при- ведённой формулы.
Рекомендуем скачать другие рефераты по теме: управление реферат, реферат решение.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата